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Equation of state of colloidal membranes

Andrew J. Balchunas,a Rafael A. Cabanas,a Mark J. Zakhary,a Thomas Gibaud, b

Seth Fraden, a Prerna Sharma, c Michael F. Hagan a and Zvonimir Dogic *ad

In the presence of a non-adsorbing polymer, monodisperse rod-like colloids assemble into one-rod-length

thick liquid-like monolayers, called colloidal membranes. The density of the rods within a colloidal membrane

is determined by a balance between the osmotic pressure exerted by the enveloping polymer suspension

and the repulsion between the colloidal rods. We developed a microfluidic device for continuously observing

an isolated membrane while dynamically controlling the osmotic pressure of the polymer suspension. Using

this technology we measured the membrane rod density over a range of osmotic pressures than is wider

that what is accessible in equilibrium samples. With increasing density we observed a first-order phase

transition, in which the in-plane membrane order transforms from a 2D fluid into a 2D solid. In the limit of

low osmotic pressures, we measured the rate at which individual rods evaporate from the membrane. The

developed microfluidic technique could have wide applicability for in situ investigation of various soft

materials and how their properties depend on the solvent composition.

Introduction

Colloidal membranes are one-rod-length thick monolayers of
aligned rods that assemble in a presence of depleting polymer.1–4

They represent a robust pathway for assembly of self-limited
structures that does not rely on the chemical heterogeneity of
the amphiphilic building blocks, but rather on their geometry.
Numerous properties of colloidal membranes, including their out-
of-plane bending rigidity, are determined by the in-plane density of
the rodlike constituents.1,5 In turn, this density is determined by
the osmotic pressure exerted by the enveloping depletant that is
balanced by the electrostatic repulsions of the charged rod-like
viruses. We describe a microfluidic platform that allows us to
continuously change the depletant concentration, while simulta-
neously measuring the membrane area using optical microscopy.
From such data we reconstruct the colloidal membrane equation
of state, which relates the osmotic pressure exerted on the
membrane to the effective in-plane rod density. With increasing
osmotic pressure, the equation of state exhibits a discontinuity due
to a 2D liquid-to-solid phase transition of the constituent rods.

Colloidal membranes with in-plane crystalline order were
studied previously. Early studies have demonstrated that in the
presence of small molecular weight depletant, filamentous

viruses assembled into hexagonally shaped membranes.6 More
recently, X-ray scattering analysis confirmed crystalline order
for these conditions.7 Solid membranes have also been
observed in a mixture of virus and poly-ethylene-glycol, whose
osmotic pressure is temperature dependent.8 This feature
made it possible to induce nucleation and crystallization
in situ, which was accompanied by large 3D out-of-plane
membrane deformations. Another work examined the liquid-
to-crystal transition with X-ray scattering techniques.9 Our
measurements reveal the magnitude of the discontinuous
volume change at the transition, and allow us to fit the entire
equation of state to a theoretical model. These results have
implications for understanding colloidal membranes. For example,
the bending modulus of a colloidal membrane is characterized by
the local compression or expansion of molecules, which increases
away from the stress-free neutral surface.10 Thus, the out-of-plane
membrane deformations are intimately coupled to its in-plane
compressibility modulus. The equation of state yields the lateral
compressibility, which in turn provides an estimate of the curvature
modulus of the colloidal membranes.

Materials and methods
Microfluidics device for in situ buffer exchange

Colloidal membranes are fragile structures held together by
weak osmotic pressures. Even the slightest flows, or the move-
ment of an AFM tip close to the surface can fragment a
membrane. To overcome these challenges we designed a micro-
fluidic device that exchanges the buffer with minimal flow
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distortions, while allowing for continuous observation of the
assemblage with high numerical aperture optics. Technologies
have been developed that equip microfluidic devices with
dialysis membranes that enable rapid spatial and temporal
buffer exchange.11,12 However, our experiments impose an
additional constraint because of the need to exchange large
molecular weight depletant polymers that do not pass through
conventional dialysis membranes.

Our microfluidic device had two PDMS layers bound
together. The first layer contained the long channel with
stepped notches on both sides, while a second layer contained
pressurised channels that act as valves that open and close the
flow channel (Fig. 1).13,14 The notches reduced the laminar flow
velocity. Due to the continuity of the flow streams, larger
channel cross-sections reduced flow velocities. We performed
experiments in notches with one or two steps, but membranes
stored in a notch with no steps were typically destroyed by the
laminar flow through the main channel. A critical element was
the inclusion of the second layer that contained two on-chip
valves. When closed, these effectively blocked minute flows
during the many-hour long interval that is necessary for the
membranes to grow to a sufficient diameter. At a flow rate of
10 mL per hour, a complete buffer exchange took approximately
ten minutes, including the time for the depletant to diffuse
from the main channel into the notches (Fig. 2).

The experiment required maintaining the same buffer com-
position over many hours. To accomplish this, the device was
designed with a cavity that encircled the channel and notches
and acted as a aqueous reservoir that is included in the first
layer. This PDMS layer was sandwiched between a microscope
glass slide and a plastic COC slab with low water permeability,
thereby minimizing the evaporation of water from the sample
chamber to the outside (Fig. 1). A hydrostatic pump was created
by closing the outlet and connecting the inlet to a solvent
filled tube that was positioned 1 m above the sample. This
replenished the evaporated solvent due to PDMS permeability.
The main channel that contained the sample and the water

reservoir were not directly connected. The water reservoir was
critical because of the long duration of the experiments and the
small sample volumes. The samples were visualized with high
numerical aperture objective. The device thickness required a
long working distance condenser for brightfield and differential
interference contrast (DIC) microscopy. High resolution images of
the membranes were obtained using fluorescence.

Directly flowing fluid into the chamber resulted in air
bubbles trapped in the notches. Eliminating air from the device
was accomplished through dead-end filling the device by closing
the outlet valve and then using a syringe pump to load the
chamber. As PDMS is highly permeable to air, the chamber was
evacuated by the air diffusing through the closed valves. Once
loaded with a rod-polymer mixture, the formation of membranes
with diameter of tens of microns required about 24 hours.

Glass coverslips (GoldSeal, FisherScientific) were coated
with the acrylamide polymer brush to prevent virus adsorption.15

Plasma treatment usually used for bonding PDMS to glass
destroyed the polymer-brush. We tried, but failed, to grow the
polymer brush after bonding the PDMS to glass. Therefore, we
clamped together the PDMS chip to the acrylamide treated glass
coverslip using an aluminum frame (Fig. 1a). Every component
in the device can be washed and reused. To avoid bending
deformations of the thin PDMS layers when clamping the device,
a slab of rigid Mylar plastic and a shaped shim plate of COC
plastic layer were used to apply pressure directly over the chip
elements forming the seal. To ensure uniform compression of
the layers, and to provide compliance while sealing, a soft rubber
O-ring was placed on top of the stack in contact with the
aluminum clamp. The aluminum clamp was tightened using
four screws. Enough pressure had to be applied to avoid leakages
from the main channel or the reservoir, but too much pressure
yielded collapsed channels.

Manufacture of the microfluidic device required two photo-
resist masters that were used to mold the PDMS device. The
masters were fabricated using conventional soft photolithography
techniques.16 The flow channel and the reservoir were produced

Fig. 1 The microfluidic device for buffer exchange. (a) Image of a fully sealed and assembled microfluidic device. The PDMS chip is clamped to a glass
coverslip, using two pieces of aluminium and four screws, to ensure no leakage between the two layers. (b) A schematic cross section of the microfluidic
device with individually labelled layers. A rubber O-ring and plastic spacer distribute the clamping pressure across the PDMS chip evenly. (c) Flow is from
right to left. A top-down view of the device design debossed on the PDMS chip. The design has an inlet and outlet (red), a flow channel with storage
notches (black), and two Quake valves (blue) that control the flow through the channel. Small circular posts, placed at the entrance of each notch,
combined with a step-shaped design, reduce laminar flow velocity in the notches. (d) Flow is from right to left. A brightfield image of a PDMS device filled
with depletant and buffer. The field of view is at the centre of the flow channel. (e and f) The valve that controls the flow within the channel, shown in
open and closed configuration. Scale bars, 1 cm (a), 1.5 mm (c), and 250 mm (d–f).
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from one master, with photoresist features of two different
heights with one using positive photoresist and the other negative
photoresist. The inlet and the outlet valves were deposited in a
positive photoresist to achieve a B10 mm height. The main
channel with the notches and the reservoir, were deposited using
negative photoresist with B50 mm height. A separate wafer
encoded the control layer for the two valves. Once molded into
the PDMS, these pressure driven control valves were positioned
above the inlet and outlet valves. The PDMS device was fabricated
by spin coating a thin layer of PDMS over the wafer that contained
the inlet, outlet, main channel and reservoir. A several mm thick
layer of PDMS was poured over the wafer that contains the
features of the valves. Unlike the original Quake formulation,13

we used 1 : 10 ratio of PDMS components for both layers. Once
cured, both layers were bonded using plasma, and inlet and outlet
fill-holes were punched into the PDMS. This way, the inlet, outlet,
main channel with notches and reservoir were exposed and
clamped directly on top of the microscope slide, while the
valves that open and close the inlet and outlet channels where
situated directly above and oriented perpendicular across those
channels (Fig. 1).

Optical microscopy, data acquisition and analysis

Experiments were performed using an inverted optical micro-
scope (Nikon Eclipse Ti) equipped with a long working distance
(LWD) condenser, and a 100� oil immersion objective (PlanFluor,
NA 1.3). A optical tweezer, created by focusing a 1064 nm laser
(Compass 1064, Coherent), and steered with a pair of acoustic-
optic modulators was used to position membranes in the micro-
fluidic notches.17 Images were acquired using a cooled CCD
camera (Clara, Andor) controlled by Micro-Manager. The colloidal
membranes were visualized either with DIC or fluorescence micro-
scopy. For fluorescence images, the microscope was equipped with
a mercury light source (X-Cite 120Q) and a single band dichroic
filter (LED-TRITC-A-NTE-ZERO, SemRock).

Sample preparation

Bacteriophage fd-wt (wild-type) and fd-Y21M have almost the same
contour length of B900 nm.18 The persistence length of fd-wt is 2.
8 mm while that of fd-Y21M is 9.9 mm.19 Both bacteriophages were

purified using standard methods.20 The viruses were prepared at
isotropic–nematic phase coexistence, and the experiments were
performed by only using viruses from the isotropic fraction.
Shorter rods preferentially partition into the isotropic phase,
hence this procedure reduced the number of long, end-to-end
fused oligomers that destabilize colloidal membranes.1 A deplet-
ing agent, Dextran MW 500 000 (Sigma-Aldrich, D5251, Lot
#023K0675), was mixed with viruses at conditions known to
promote assembly of colloidal membranes. All samples were
made in 100 mM NaCl, 20 mM Tris–HCl, pH 8.0 buffer, and had
a final virus concentration of 2.5 mg mL�1. Due to the difference
in persistence length of fd-wt and fd-Y21M, the initial amount of
depletant was different for each virus type:19 fd-wt and fd-Y21M
membranes were assembled at depletant concentrations of
42 mg mL�1 and 37 mg mL�1, respectively. The mixture was
transferred into tubing (PTFE #30 AWG, Cole-Parmer) using a
syringe (5 mL, Hamilton Gastight), and a syringe pump (PHD
22/2000, Harvard Apparatus) was used to dead-end fill the PDMS
device. The sample was always introduced at constant flow-
rate, so the pressure in the device channels is unknown.
Fluorescent membranes were assembled with viruses labelled
with an amine reactive fluorescent dye (DyLight-550 NHS Ester,
FisherScientific).21 There were about 20 dye molecules per virus
as determined by the relative intensity of the absorbance at the
wavelength related to the virus (269 nm) and the fluorescent dye
(550 nm). Samples used to characterize the dynamics of the
constituent rods were doped with labelled viruses at a ratio of
1 to 50 000 of labelled to unlabeled particles. Fluorescence images
revealed the dynamics of individual rods within the membrane.

Image analysis

The membrane area was measured using two methods. First,
we determined the area of a fluorescently labelled membrane
with ImageJ, by setting an intensity threshold at two standard
deviations above the mean pixel intensity. Second, we used DIC
microscopy to visualize the membrane’s edge, and from there
we measured the membrane area with the circle tool in ImageJ.
Both measurements were consistent with each other. Due to its
monolayer structure, the membrane area is directly propor-
tional to its volume. To convert the measured area into density,

Fig. 2 Time delay associated with buffer exchange. (a) The microfluidic exchange device is viewed with fluorescence microscopy. The fluorescent
depletant and buffer mixture is flowed in from the right side of the page. Both valves are in the open configuration. The time after flow was started is
presented on each frame as min:sec. Measurements are performed in a small area of a one-step notch (shaded in blue in the last time frame). (b) Pixel
intensity measures the concentration of the new mixture in the device, relative to the original sample concentration. The complete buffer exchange
occurs after the intensity plateaus. The mean pixel intensity, with background subtraction, was measured in the shaded blue region as a function of time.
Scale bar, 250 mm.
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we analysed a few equilibrium membrane samples with small
angle X-ray (SAXS) measurements, and extracted the particle
separation. Interactive data language (IDL, ITT VIS) software
was used to track individually labelled viruses, and from there
measure the mean square displacement for isolated rods
diffusing within a membrane.

SAXS experiments

Small angle X-ray scattering (SAXS) experiments on individual
membranes were performed at the ID02 beamline of the
European Synchrotron Radiation Facility in Grenoble, France.22

The samples were held in the cover slip chamber with membranes
lying flat on the coverslip. The chamber was set perpendicular to
the X-ray device, so that the membranes were in a face-on
configuration with respect to the incoming beam. The sample
was scanned with a 20 � 20 mm2 X-ray beam for individual
colloidal membranes, and signal was recorded with a q range
between 0.04 nm�1 to 2 nm�1. The intensity measured in the
supernatant was used as the background signal. The plotted
intensities were radial averages of the difference between the
scattered intensity from the membrane and the background
intensity.

X-Ray experiments yield a scattered intensity I(q) with a
correlation peak positioned at qpeak, which is related to average
lateral filament separation (Fig. 4b). To estimate the average
distance between the filaments we need to divide the measured
intensity by the form factor F(q) which would yield the structure
factor: S(q) B I(q)/F(q). The form factor for our experiment
would consist of a dilute suspension of rods that are all aligned
along the along the direction of the incident X-ray beam.
In practice, this is not doable as dilute rod suspensions are
necessarily isotropic (Fig. 4a). To make progress we theoretically
estimate the form factor and from there calculate the structure
factor of colloidal membranes. Note that the division by the form
factor shifts the peak location by at most 3% (Fig. 4b). From the
measured structure factor we estimate the average filament
separation d = 2p/qpeak. Assuming local hexagonal packing yields
the density of rods within fd-wt membranes.

To normalize the fd-Y21M equation of state, we estimated
the densities of these membranes using DIC microscopy. The
DIC signal along the shear axis is proportional to the index of
refraction difference between the membrane and the buffer. In
turn, the membrane index of refraction is linearly proportional
to the virus density. The edge intensity along the shear axis
and the membrane’s rod density should be linearly related.
Comparing this data with the DIC edge intensity of a fd-wt
membrane of a known density, yielded the absolute density of
fd-Y21M membranes. Repeating this analysis on fd-wt membranes
with known densities from X-ray diffraction measurements
revealed that this method has B10% accuracy.

Experimental results

After mixing the virus and polymer suspension, one-rod length
thick mesoscopic disk-like structures nucleated in the bulk
suspension. Within a few minutes, viruses completely phase
separated from the isotropic polymer suspension. Thereafter,

the mesoscale disks grew into mature membranes through
lateral coalescence.23 After reaching a certain size, the dense
membranes sedimented on to the coverslide, ensuring that
they remained in the image plane for the duration of the
experiment (Fig. 3). We formed colloidal membranes within a
microfluidic device. Subsequently, using an optical tweezer,
we placed a few isolated circular membranes within a stepped
notch on a side of the main channel. The membranes were
continuously visualized with either fluorescence, brightfield, or
DIC microscopy. For conditions where equilibrium membranes
formed, the mature membranes had a constant area as long as
the buffer composition remained the same, indicating that the
evaporation of the virus into the isotropic suspension was
negligible on the experimental time scales. Consequently, any
change in the membrane area in response to changing osmotic
stress, or equivalently depletant concentration, was directly
related to the change in the virus density, within an unknown
scaling factor.

We performed a sequence of buffer exchanges. After each
exchange, we waited B60 minutes to allow the depletant to
diffuse into the stepped notch and the sample to equilibrate,
before measuring the membrane area. The area significantly
changed with depletant concentration. For example, increasing
the Dextran concentration from 33.5 mg mL�1 to 100 mg mL�1

reduced the area by 42% (Fig. 5). We measured the area of the
same membrane for B20 different dextran compositions.
In order to average data from different membranes all measure-
ment sweeps had at least one data point with a common
Dextran concentration, which was used to rescaling the area.

The above-described procedure yielded the membrane area
as a function of the applied osmotic pressure. Converting this
data into an equation of state requires the scaling factor that
relates area to virus density. Therefore, we have measured the
virus density within a membrane by using small angle X-ray
scattering, which yielded an isotropic ring whose peak location
can be used to calculate the average lateral filament separation
(Fig. 4). The scattering experiments were repeated at a few
dextran concentrations for which equilibrium membranes
formed, and the densities found in the X-ray were consistent
with those found in the microfluidic measurements.

Fig. 3 Three views of colloidal membranes. (a) A top-down view of a 2D
colloidal membrane imaged using DIC microscopy. (b) A schematic of a
colloidal membrane. There is complete phase separation between the
self-assembled rod-shaped viruses (red) and depleting polymer, which
maximizes the system entropy (polymer is not shown). Scale bar, 5 mm.
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Equilibrium colloidal membranes of fd-wt formed over a
fairly narrow range of dextran concentrations (from 40 mg mL�1

to 55 mg mL�1). The microfluidic device allowed for measure-
ments over a significantly larger range of osmotic pressures
(Fig. 6a). This was possible because 2D colloidal membranes are
highly metastable structures that cannot readily melt into 3D
nematic tactoids at lower depletant concentrations, or freeze into
3D smectic liquid crystals at high concentrations. The equation of
state exhibited a pronounced discontinuity at 55 mg mL�1 dextran
concentrations, where the area changed by 8%. This is suggestive
of a first order phase transition, due to two-dimensional freezing
of the in-plane virus order. At osmotic pressures below the
transition, colloidal membranes exhibited significant edge
fluctuations due to finite edge tension.24 Increasing the dextran
concentration suppressed these fluctuations, and above the
transition they entirely ceased. The arrest of edge fluctuations
was accompanied by a discontinuous change in the membrane
area. Doping the membrane with fluorescent rods revealed the
dynamics of constituent rods in both phases. At lower osmotic
pressures viruses exhibited diffusive motion, but above the
discontinuity their motion ceased (Fig. 7). This confirms our
hypothesis that with increasing osmotic pressure colloidal
membranes undergo a freezing transition from a liquid-like

to solid-like membranes. The transition is reversible, with no
measurable hysteresis.

We also measured the equation of state for fd-Y21M mem-
branes, a virus with a point mutation in the major coat protein
(Fig. 6b). This subtle structural change yields filaments with
essentially the same contour length, but a larger persistence
length of 9.9 mm.18,19 Both fd-wt and fd-Y21M have similar
equations of state, although the dextran concentration required
to induce a phase transition into a 2D crystal is different for the
two virus types. Fd-wt membranes crystallized at B55 mg mL�1

while fd-Y21M crystalized at B42.5 mg mL�1. We ascribe
the difference in the transition pressure to the difference in
persistence length of the viruses.

We investigated the upper and lower bounds over which
the colloidal membranes remain metastable. At sufficiently
high osmotic pressures we found that colloidal membranes
solidified and fractured. Notably the onset of fracture depended
on virus type: fd-wt fractured at much lower concentrations
compared to fd-Y21M. At lower dextran concentrations we
found two different pathways by which membranes became
unstable. In one pathway, we observed direct nucleation of 3D
nematic tactoids. The nucleation event induced formation of
large-scale flows that quickly transported all the rods from a
metastable 2D membrane into a more stable 3D tactoid (Fig. 8).
Intriguingly the tactoid nucleation events only occurred at the
membrane’s edge, where the boundary conditions induce tilt
and the associated formation of a thin edge-bound layer of a
quasi 1D-nematic phase.23,24 The alternate pathway is direct
evaporation of rods into the background isotropic suspension
at low enough osmotic pressures (Fig. 9).

To investigate rod evaporation, we formed fd-Y21M membranes
in the stable regime at a dextran concentration of 40 mg mL�1.
Subsequently, we performed a buffer exchange to a dextran
concentration to 25 mg mL�1, a regime where the equation of
state could not be measured since the membrane area changes on
experimental time scales. The buffer exchange took B10 minutes,
while the membrane area decreased on a longer time scale of tens
of minutes (Fig. 9). In principle, virus particles can evaporate either
from the edge-bound 1D nematic, or directly from the 2D
membrane interior. The former case would yield the area rate of
change proportional to the membrane circumference, or equiva-
lently the square root of the area. For the latter case, the evapora-
tion rate would be proportional to the area. The experimentally
measured curve was well described by the exponential curve, which

Fig. 4 Small angle X-ray scattering on colloidal membranes. (a) Form
factor of an isotropic dispersion of fd-virus at 0.5 mg mL�1 (circle).
Corresponding theoretical form factor F of the fd-virus all aligned along
the X-ray beam. (b) Intensity scattered by a colloidal membrane (bottom
curves) and structure factor S = I/F (top curves) with F being the theoretical
form factor. The position of the peak is indicated by the vertical dash line.
Going from I to S and increasing dextran concentration c shift qpeak from
0.517 to 0.530, 0.530 to 0.540 and 0.545 to 0.553 nm�1.

Fig. 5 Membrane area decreases with increasing osmotic pressure. A series
of images of a particular membrane, composed of fluorescently labelled
fd-Y21M rods, shown at four different dextran concentrations. Numerical
labels indicate dextran concentration in mg mL�1. Scale bar, 5 mm.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
9 

Ju
ly

 2
01

9.
 D

ow
nl

oa
de

d 
by

 B
ra

nd
ei

s 
U

ni
ve

rs
ity

 o
n 

9/
15

/2
01

9 
6:

59
:4

9 
PM

. 
View Article Online

https://doi.org/10.1039/c9sm01054h


6796 | Soft Matter, 2019, 15, 6791--6802 This journal is©The Royal Society of Chemistry 2019

indicates that virus mainly evaporated throughout the entire
membrane interior. The unbinding rate for the viruses under these
conditions is on average 4.1 min�1.

Theoretical model of the equation of state

We develop a phenomenological model that explains some
aspects of the measured equation of state. We assume that

there is no depletant inside the membrane. Therefore, mechanical
equilibrium requires that the applied osmotic pressure, Papp, be
balanced by the pressure of the rods within colloidal membrane,
Pint. We estimate the osmotic pressure arising from inter-rod
electrostatic interactions and the suppression of rod conforma-
tional fluctuations as the rod density increases using a previous
theoretical model.25 In brief, we calculate the lateral extent of
conformational fluctuations, d, of a filament within a confining
electrostatic field generated by nearest neighbour rods arranged on
a hexagonal array. The characteristic length along the rod contour
of such undulations is given by the deflection length:

ld D d2/3lp
1/3 (1)

with lp the filament persistence length.26–28 Each deflection
gives rise to a free energy cost that scales with kBT, so the free
energy per rod arising from conformational fluctuations
is proportional to the number of deflections over the total
filament contour length:

Fconf = ckBT/ld (2)

with the constant given by c = 2�2/3.25

We assume that the deflection length is large compared to
the Debye length ld c k�1 so that the filaments can be locally
treated as rigid rods when calculating the electrostatics. In this
limit, the far field of the electrostatic potential f from a rod

Fig. 6 Equation of state of fd-wt and fd-Y21M colloidal membranes. (a) Rod density as a function of dextran concentration measured for fd-wt
membranes. Inset: Discontinuity in the equation of state at B54 mg mL�1 is consistent with a first order freezing and phase transition between a 2D
liquid-like and 2D solid-like membrane. Diamonds indicate three samples where the in-plane rod density was determined with small angle X-ray
scattering measurement. Red bars indicate regions where colloidal membranes are equilibrium structures. (b) Equation of state for fd-Y21M membranes.
The membrane freezes at smaller osmotic stresses. The orange lines are guides to the eye. Error bars are the standard deviation of 10 measurements of
membrane area.

Fig. 7 Dynamics of viruses in liquid and solid membranes. (a) A top-down
view of a fd-wt membrane (red) taken with DIC microscopy is overlaid with
a fluorescence image that shows isolated viruses (cyan). This technique
was used to visualize individual rods moving in the bulk. (b) The mean
square displacement of fluorescently labelled rods was measured as a
function of time for both a 2D liquid-like (green) and a 2D solid-like
(purple) membrane. Rods in the liquid-like membrane exhibit diffusive
behaviour with a diffusion coefficient of 0.03 mm s�1, while those in the
frozen membrane have no measurable motion. Scale bar, 5 mm.

Fig. 8 A 2D colloidal membrane melts into a 3D nematic tactoids. A time lapse showing how a metastable 2D colloidal membrane melts into a stable 3D
tactoid (blue dashed outline) at low osmotic pressure. The tactoid nucleates from the membrane’s twisted edge, where nematic order is already very
high. The tactoids exhibit a surface frozen smectic monolayer. Scale bar, 10 mm.
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(outside of its double layer) is described by the Debye–Hückel
approximation, which for a cylinder is given by:

c krð Þ � 2xeffK0 krð Þ; for r � s
2
þ k�1; (3)

where c = ef/kBT is the non-dimensional electrostatic potential,
e is the elementary charge, K0 is the zero-order modified Bessel
function of the second kind, and xeff = lBneff is the dimension-
less linear charge density, with lB E 0.71 nm the Bjerrum
length and neff the effective filament linear charge density.29

The effective charge density can be calculated from the non-
linear Poisson–Boltzmann equation as described below.

The electrostatic free energy depends sensitively on the scale
of lateral undulations d, since these bring neighbouring rods
closer together, thus enhancing the electrostatic energy.
Performing a variational calculation, in which d is determined
by minimizing the total free energy Ftot arising from conforma-
tional fluctuations and electrostatics, results in the following
expression for d:25

d8=3e
1
2
k2d2

1þ 1

2
k2d2drod�1

¼ 2clBdrod
1=2ekdrod

9 2pð Þ1=2xeff 2lp1=3k3=2
: (4)

Assuming hexagonal ordering of the rods, the osmotic pressure

is given by: Pint ¼ �
@Ftot

31=2drod@drod
,30 which yields:

Pint ¼
2ckBT

32=3kdrodd8=3lp1=3
: (5)

A subsequent work extended the Odijk’s calculation and
relaxed some approximations; however, we were not able to
match the scaling of the experimental applied osmotic pressure
using this model.31 Moreover, an earlier calculation within a
hexagonal layer of charged filaments predicts that the osmotic
pressure increases with persistence length,32 in contrast to
our experiments which exhibit a decrease in pressure with
persistence length. This calculation is inappropriate for the

semiflexible regime because it assumes a persistence length
that is small or on the order of the inter-rod spacing, as has
been previously noted.25 A more recent calculation for the effect
of fluctuations on inter-rod interactions obtains a decreasing
dependence of osmotic pressure with persistence length.33

However, we do not observe the predicted doubling or quad-
rupling of the apparent decay length of the interactions due to
fluctuations for the range of inter-rod separations studied in
our experiments, although this could become relevant for larger
inter-rod separations.

To proceed further, we need to solve for the effective linear
charge density xeff. Due to the finite width of the fd-virus, the
estimate for an infinitely thin cylinder that counterions will
renormalize the charge density to one charge per Bjerrum length
is inapplicable.34 Instead, we note that the Debye–Hückel approxi-
mation accurately describes the far-field form of the electrostatic
potential, but over-predicts the potential in the near field.27,35

Therefore, we find the effective charge density for which the
far-field potential is correct, as has been described previously.
We used an approximate analytical solution to the nonlinear
Poisson–Boltzmann equation around a cylinder, which matches
a near-field solution to the Debye Hückel far-field.36 Equating the
far-field result to eqn (3) yields the effective charge density, as a
function of the bare charge density n0 and k.

To capture the experimental observation that the decay
length of the interactions is shorter than the bulk Debye length,
it was necessary to account for the presence of excess counter-
ions within the colloidal membrane. We related the local Debye
length k�1 to the bulk value kD

�1 and the membrane charge
density using the cylindrical cell model.31,37 In this approach,
the hexagonal Wigner–Seitz cell associated with each virus is
represented by a cylinder with the same volume. The radius of
the effective cylindrical Wigner–Seitz cell is:

RS ¼ drod

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
p .

2p

r
; (6)

and the local Debye length is calculated as described
previously,31

k ¼ kD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshcS

p
; (7)

and

tanhcS ¼
2xeff I0 kRSð ÞK1 kRSð Þ þ I1 kRSð ÞK0 kRSð Þð Þ

I1 kRSð Þ � K1 kRSð Þ I1 ks=2ð Þ
K1 ks=2ð Þ

(8)

where cS is the dimensionless electrostatic potential at the
surface of the cell. Since xeff and k are interrelated, it is necessary
to solve for them self-consistently as functions of drod.

We set the fd diameter as s = 6.6 nm, and use the estimate of
v0 = �7 e nm�1 for fd.38 For the bulk Debye length kD

�1 = 1 nm,
we obtain an effective dimensionless linear charge density of
xeff = 36.15. For comparison, using the Debye Huckel approxi-
mation without the near-field correction would result in an

effective charge density of xDH ¼
lB

bk s=2ð ÞK1 ks=2ð Þ � 53:56: The

Debye screening length and effective filament charge depend

Fig. 9 Evaporation of colloidal membranes at low osmotic pressures.
(a) Membrane area as a function of time was measured for different
membranes. Two curves were normalized such that evaporation begins
at area equal to one, and experiments were performed at 25 mg mL�1

dextran concentration. Each curve represents a unique membrane.
All curves are fit well by exponential decay functions and exhibit an average
of rate off koff rate of 4.1 min�1. (b) A sequence of images showing how the
membrane area shrinks with time due to evaporation of virus particles.
Scale bar, 5 mm.
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on the filament separation (Fig. 10). The local Debye length varies
by 40% over the experimental range of inter-rod distances.

To compare the experimental data to the theoretical model
we converted the dextran concentration into the osmotic pres-
sure using a modification of the previously published empirical
relationship:

P(c) = A1(mw0/mw)c + A2c2 + A3c3, (9)

where c is the dextran weight fraction, A1 = 0.0655 atm cm3 gm�1,
A2 = 10.38 atm cm6 gm�2, A3 = 75.3 atm cm9 gm�3, P is the
osmotic pressure in atmospheres, mw = 6.7 � 105 g mol�1

is the dextran molecular weight in our experiments, and mw0 =
3.7 � 105 g mol�1 the dextran molecular weight used for the
published measurement.39 The term mw0/mw corrects the van’t
Hoff coefficient for the molecular weight difference. Note that
the osmotic pressure is relatively insensitive to molecular
weight at experimentally relevant concentrations.39–41 Impor-
tantly, this relationship shows that the osmotic pressure is non-
ideal, exceeding the van’t Hoff ideal gas limit by more than an
order of magnitude.

The above described model assumes in-plane hexagonal
order. This is strictly applicable only in the crystalline phase,
although there will still be local hexagonal order in the liquid
phase. Plotting the experimental data for fd-wt and fd-Y12M
against the theoretical prediction for the applied pressure
reveals qualitative agreement in several respects (Fig. 11). First,
the theory captures the apparent exponential decay, with decay
constant keff

�1 E 1.07 nm, in agreement with the experimental
decay length, keff

�1 E 1.04 nm (Fig. 12). These are only
apparent decay lengths since the local Debye length is a
function of the inter-rod spacing. Measuring pressure rather
than force incurs an extra dependence on inter-rod spacing.
Applying the same analysis to the force, f = 31/2drodPint(drod),
yields apparent decay lengths of 1.16 nm and 1.20 nm for
experiment and theory, respectively. Second, the theory reproduces

the observation that the measured equation of state is nearly
insensitive to persistence length (for lp Z L) in the limit of small
inter-rod spacing, or equivalently high osmotic pressures. For
comparison, the theoretical result in the rigid rod limit is also
shown. In this regime, filament undulations are suppressed to
scales that are smaller than the Debye length.

The theory over-estimates the osmotic pressure even in the
rigid rod limit by a factor B5. This can be attributed either to
the use of the Poisson–Boltzmann model, which neglects ion
correlations, or neglecting the nonuniformity of the fixed
charges in the viruses, or to the approximate calculation of
the effective linear charge density. For example, the extent of
counterion condensation onto charged lamellar stacks increases
with decreasing layer separations, thus leading to charge regulari-
zation that reduces the effective surface charge.42 We chose not to

Fig. 10 The electrostatic screening length and effective filament charge
within colloidal membranes. The inverse Debye length, k (black line),
and the corresponding dimensionless effective linear charge density
xeff (dashed red line) are plotted as a function of inter-rod separation.
The effective charge density is normalized by its bulk value, xeff = 36.15 for
kD = 1 nm�1.

Fig. 11 The theoretical predictions for the osmotic pressure as a function
of inter-rod separation are shown for persistence lengths corresponding
to fd-wt (lp = 2 mm, blue line) and fd-Y121M (lp = 10 mm, orange line),
overlaid on the experimental data. The theoretical results are obtained
from eqn (4)–(9). The dashed black line shows the result in the rigid rod
limit (lp = N).

Fig. 12 Osmotic pressure of crystalline membranes scales exponentially
with filament separation. The experimentally measured equation of state
for fd-wt and fd-Y121M is plotted as a function of the inter-rod separation.
The log scale Y-axis illustrates the exponential decay. The solid black line is
a best fit to the data within the crystalline regime, yielding a decay length of
keff
�1 = 1.04 nm.
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account for this effect because it is likely small in our case because
the surface separation is large compared to the Debye length, and
it would require an additional fit parameter – the counterion-
virus interaction strength. However, note that since our computer
rod–rod interactions are quadratic in the effective charge, the
discrepancy between theory and experiment would be eliminated
by reducing the effective charge to about half its value.
We performed an alternative calculation in which the viruses are
treated as semiflexible filaments with hard-core interactions,
where the effect of the electrostatics is accounted for by an
‘‘effective diameter’’ that is larger than the intrinsic virus diameter.
However, this approach failed to capture the scaling of the
experimental data with drod or the lack of dependence on persis-
tence length.

It is possible to estimate the location of the melting transition
for an array of semiflexible chains interacting through hard-core
interactions.43 Extending this model to include electrostatic inter-
actions is challenging and beyond the scope of the present work.31

However, we can make a qualitative comparison to the Lindemann
criteria for a 3D crystal of point particles, which states that melting
occurs when the typical size of particle fluctuations reaches 0.1a,
with a the lattice spacing.43 The onset of the melting transition and
its dependence on persistence length can be roughly captured by
equating the scale of undulations (eqn (4)) to the inter-surface
separation between rods according to 0.17(drod � s), where the
factor 0.17 was fit by eye (Fig. 13). However, this comparison is
qualitative at best, and the melting transition predicted previously
required undulations of about five times the Lindemann criteria.43

Discussion

Osmotic stress techniques have been used to interrogate pro-
perties of diverse soft materials, providing insight into the
molecular interactions that govern behaviors of both lipid
bilayers and biopolymer suspensions.44–46 Our method has a
few differences with the standard implementation of the osmotic
stress techniques. First, instead of extracting the average filament

separation from X-ray scattering, we obtained the rod density
by measuring the assemblage area with optical microscopy.
Since there is no significant exchange of rods on experimental
times scales, the membrane area is directly related to the
filament spacing. Second, our technique permits in situ change
of the osmotic stress, which yields more accurate measure-
ments. This feature revealed a discontinuity in the equation of
state that is associated with a first other phase transition from a
liquid to a solid state. In a similar spirit, a recent study has
utilized the temperature dependence of poly(ethylene glycol) to
extract the discontinuous change in the filament spacing
associated with the transition from the cholesteric to line
hexatic.47 Finally, the ability to tune the osmotic pressure
in situ enabled assembly of metastable colloidal membranes,
while compatibility with optical microscopy enabled visualiza-
tion of the kinetic pathways by which these metastable 2D
colloidal structures transform into 3D materials.

Equilibrium colloidal membranes form over a fairly limited
range of depletant concentrations. Osmotic pressures beyond
an upper critical value leads to the formation of bulk smectic
phases, while pressures below a lower critical value lead to
nematic tactoids.48,49 Our microfluidic technique allowed for
assembly and investigations of metastable colloidal membranes
using a two-step process. In a first step we assembled colloidal
membranes for a range of osmotic pressures where they are
equilibrium structures. Subsequently, we changed the osmotic
pressure, to values where colloidal membranes do not assemble
directly from an isotropic suspension. These experiments revealed
that colloidal membranes are metastable over a wide range
of osmotic pressures and also demonstrated the fundamental
difference between colloidal membranes and conventional 3D
materials. Formation of either 3D tactoids or bulk smectic phases
from a 2D colloidal membranes requires a rearrangement in
which rods collectively escape into the third dimension. Such
transformations have large nucleation barriers. At sufficient low
pressures, a membrane can either directly evaporate into an
isotropic phase or melt into a 3D nematic tactoid. Tactoid
nucleation always takes place at the membrane’s edge. This can
be rationalized as the boundary conditions enforce uniform twist
of the membrane’s edge that locally melts a smectic monolayer
into a nematic.24,50 Similar pathways were observed in mixtures of
viruses and thermosensitive polymer.51,52

Intermolecular interactions. Confined liquid crystalline
semi-flexible filaments have more restricted degrees of freedom
than filaments in a disordered isotropic suspension. Conse-
quently, there is an entropic penalty associated with the formation
of orientationally ordered phases. This penalty is smaller for more
rigid filaments; thus, the stiffer fd-Y21M filaments form mem-
branes at lower osmotic stress, when compared to the more
flexible fd-wt. Our results suggest that theories of colloidal mem-
branes phase behavior which do not account for semi-flexibility
will under-predict the osmotic pressure required to stabilize
membranes. This is consistent with previous findings that
increasing filament flexibility supressed the formation of both
nematic and smectic liquid crystals.19,53–58 Intriguingly, the fila-
ment flexibility does not influence the equation of state at higher

Fig. 13 The scale of filament undulations, d, calculated from eqn (4) is
shown for fd-wt (blue line) and fd-Y121M (orange line) as a function of
inter-rod separation. The straight line is an effective Lindemann criteria,
d = 0.17(drod � s), which estimates the inter-rod separation at which
the membrane melts for each case.
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osmotic pressures or equivalently smaller filaments separations.
Recent experiments using classical osmotic stress techniques
examined the interactions of both fd-wt and fd-Y21M virus, and
reached the same conclusion.38 While our experiments studied a
different range of osmotic stresses, our data is consistent with
these results.

A Poisson–Boltzmann calculation that accounts for the
increased density of counter ions within the membrane (com-
pared to bulk) explains some features of the measured equation
of state in the crystalline regime. This result indicates that
electrostatics are the dominant interaction between rods at
surface–surface separation distances in the range 3–6 nm.
Consistent with the experimental results, the theory finds that
filament conformational fluctuations have a small effect on rod
interactions at inter-rod separations in the crystalline regime.
We found that theories which represent electrostatic effects
through hard-core interactions and an ‘‘effective diameter’’
could not describe the experimental measurements. Consistent
with this observation, previous models of colloidal membranes
and rafts that did achieve quantitative agreement with experi-
ments without accounting for electrostatics assumed that the
depletant osmotic pressure is given by an ideal equation of
state.4,59 In fact, the empirically measured equation of state for
dextran (eqn (9)) exceeds the ideal formula by an order of
magnitude at experimentally relevant concentrations.

Estimating elasticity of colloidal membranes. The measured
equation of state provides insight into the energetic cost of
elastically deforming colloidal membranes. Similar to lipid
bilayers, the out-of-plane deformations of colloidal membranes
are described by the Helfrich energy that contains two para-
meters, Gaussian and mean curvature moduli.60 The Gaussian
modulus of colloidal membranes, �k, has been measured using
two independent methods.61,62 Both methods yielded �k, that is
positive and of the order of B100 kBT, suggesting that mem-
branes can lower their free energy by adopting saddle-splay
configurations. An early study of colloidal membranes esti-
mated that k is also a few hundred kBT.1 The equation of state
yields an independent estimate of the curvature modulus, by

calculating the lateral membrane compressibility, ka � �
1

A

@A

@P
.

The compressibility is related to the bending modulus, k, by
k = kah2/12, where h is the membrane thickness. The equation
of state measurements yield that ka B 230 000 kBT mm�2 at
40 mg mL�1 dextran concentration, which leads to a mean
curvature modulus of k B 15 000 kBT, where we assumed that
membrane thickness is B0.9 mm.

The equation of state based estimate of k is very different
from the previous measurement.1 In the original experiments,
k was estimated by analysing the out-of-plane height fluctua-
tions of membranes that were viewed in the edge-on configu-
ration. However, the distance from the membrane edge was not
systematically controlled and the height fluctuations were
visualized by non-confocal techniques that do not effectively
eliminate out-of-plane signal contributions. It is possible that
the out-of-plane fluctuations studied previously were actually
associated with the soft edge modes rather than the intrinsic

bending modes. Recently, it has been shown that colloidal
membranes exhibit significant out-of-plane edge-bound modes
that create saddle-splay deformations. These fluctuations are
driven by the low and positive value of the Gaussian modulus of
colloidal membranes, and decay as one moves away from the
edge.62 Both the edge fluctuations and a 1D cross-section of the
height fluctuations scale as B1/q3. The only way to rigorously
distinguish between the two fluctuation modes is to analyze
how the measured spectrum changes as one moves away from a
free edge.

The conflicting measurements of curvature modulus
demonstrate that the continuum properties of colloidal mem-
branes are not well understood and further experimentation is
required. In particular, there is a need for methods that
use external force to robustly perturb a colloidal membrane
structure in order to measure its bending rigidity. Alternatively,
re-examining the height fluctuations of a colloidal membrane
viewed in the edge-on configuration, and how they depend on
the distance away from the edge, might provide additional
insight into the microscopic origin of previously measured
bending fluctuations.
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