
PHYSICAL REVIEW E 105, 024310 (2022)

Pattern formation in a four-ring reaction-diffusion network with heterogeneity
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In networks of nonlinear oscillators, symmetries place hard constraints on the system that can be exploited to
predict universal dynamical features and steady states, providing a rare generic organizing principle for far-from-
equilibrium systems. However, the robustness of this class of theories to symmetry-disrupting imperfections
is untested in free-running (i.e., non-computer-controlled) systems. Here, we develop a model experimental
reaction-diffusion network of chemical oscillators to test applications of the theory of dynamical systems with
symmeries in the context of self-organizing systems relevant to biology and soft robotics. The network is a ring
of four microreactors containing the oscillatory Belousov-Zhabotinsky reaction coupled to nearest neighbors via
diffusion. Assuming homogeneity across the oscillators, theory predicts four categories of stable spatiotemporal
phase-locked periodic states and four categories of invariant manifolds that guide and structure transitions
between phase-locked states. In our experiments, we observed that three of the four phase-locked states were
displaced from their idealized positions and, in the ensemble of measurements, appeared as clusters of different
shapes and sizes, and that one of the predicted states was absent. We also observed the predicted symmetry-
derived synchronous clustered transients that occur when the dynamical trajectories coincide with invariant
manifolds. Quantitative agreement between experiment and numerical simulations is found by accounting for
the small amount of experimentally determined heterogeneity in intrinsic frequency. We further elucidate how
different patterns of heterogeneity impact each attractor differently through a bifurcation analysis. We show that
examining bifurcations along invariant manifolds provides a general framework for developing intuition about
how chemical-specific dynamics interact with topology in the presence of heterogeneity that can be applied to
other oscillators in other topologies.

DOI: 10.1103/PhysRevE.105.024310

I. INTRODUCTION

Network science unifies the study of disparate physical
systems that can be cast as discrete sets of interacting dy-
namical units [1]. Here, we focus on networks of self-driven
chemical oscillators, which use chemical fuel to exhibit far-
from-equilibrium dynamics. This simple framework provides
profound insights into systems ranging from electrical power
grids to biological neural networks known as central pattern
generators responsible for coordinating autonomous animal
locomotion [2–7].

The design of networks that generate desired spatiotempo-
ral patterns is a great challenge because universal organizing
principles for far-from-equilibrium systems are exceedingly
rare. Exploiting network symmetry is one way to meet this
challenge. Symmetries place hard constraints on the network
dynamics of self-driven oscillators by dictating that certain
transient features and steady-state patterns must exist.

*These authors contributed equally to this work.
†Corresponding author: fraden@brandeis.edu

A class of results uses group theory to predict spatiotempo-
ral patterns required by the spatial symmetry of the network
[8–10]. One such result, the H/K theorem, enumerates all
symmetry-derived patterns by including the temporal period-
icity of the oscillators [3,11–15]. Significantly, these patterns
are universal. They depend only on the coupling topology
and are independent of all system-specific details regarding
the nature of the nonlinear oscillators themselves and even
whether or not the coupling is nonlinear. This class of the-
ories has important implications for biology, leading to the
ansatz that central pattern generators exploit symmetry [3], or
in other words that “form follows function.” However, these
striking results derive from the strong assumption that nodes
in the network and their interconnections are strictly identical
[11,15]. Since the framework is powerful, knowing how to
apply it to specific systems that are not strictly homogeneous
is beneficial for understanding naturally occurring biological
and chemical systems, developing control strategies [16], and
designing new materials.

In this work we experimentally and theoretically explore
the effect of frequency heterogeneity on the symmetry-
required dynamics of a ring of four chemical oscillators.
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Experimental studies exploring heterogeneity in networks
of any kind are rare, but are necessary to assess the rele-
vancy of symmetry-based theories to real-world networks.
Here, we present a study of heterogeneity in a chemical
reaction-diffusion network. These chemical networks play
an important role in elucidating significant biological phe-
nomena, such as morphogenesis [17] and central pattern
generators in neural networks [2].

The influence of heterogeneity on synchronization dynam-
ics is integral to the study of oscillator networks. Kuramoto
was first to explore the collective behavior of oscillators
through the lens of a dynamical phase transition controlled
by the dimensionless ratio of the oscillators’ frequency spread
to their coupling strength [18]. This mean-field theory, which
ignores network topology, predicts that at a critical coupling
strength a subset of oscillators in a large system of attractively
coupled oscillators will overcome differences in their intrinsic
frequencies to oscillate with a common frequency and phase
as a single, synchronized group or “cluster.” The chemical
reaction-diffusion networks in our study have differences and
similarities with the Kuramoto model. One difference is that
reaction-diffusion networks have short-range coupling instead
of the all-to-all coupling of the Kuramoto model. Conse-
quently, network topology influences their dynamics leading
to spatiotemporal patterns, which are absent in the Kuramoto
model. A similarity between the systems is that phase locking
is destabilized when heterogeneity exceeds a critical value.

We experimentally study an oscillatory chemical reaction-
diffusion network and examine its dynamics within the
framework of symmetry-based network theories [11,19]. We
use the well-characterized Belousov-Zhabotinsky reaction as
the oscillatory medium, and embed it in a polydimethylsilox-
ane (PDMS) network patterned using soft lithography [20,21].
One significance of studying a self-contained reaction-
diffusion system lies in the potential for fabrication of
autonomous devices that organize their spatiotemporal dy-
namics through processes analogous to living systems. This
experimental system oscillates stably in a single attractor
state for up to 70 periods [21], which is an order of mag-
nitude longer than reported in previous studies of living
networks [5,22,23]. This provides confidence that observed
steady states correspond to fixed points of the idealized system
that we model theoretically, which assumes a steady supply of
reactants and removal of by-products. The enhanced longevity
of our experiments over prior work is especially important
given that the experimental system is closed and existence of a
truly stationary state, in the sense that the state lasts infinitely
long, represents an idealization. We restrict our examination
to a four-ring network that is predominantly coupled through
inhibitory interactions. We find that this network is robustly
multistable and exhibits dynamics that are captured by a phase
model faithful to the Belousov-Zhabotinsky (BZ) chemistry.
[24,25] that can be quantitatively fit to data with few, physi-
cally interpretable parameters. This network therefore serves
as a minimal but rich model system for exploring the predic-
tions of the H/K theorem and does so in a reaction-diffusion
context that is important for biological phenomena [2,17].

By observing the dynamics of hundreds of instances of the
four-ring network, which is an order of magnitude more ex-
periments than done previously in reaction-diffusion networks

[5,22,23], we are able to quantitatively compare spatiotem-
poral patterns in experiment to theory with and without
heterogeneity. The BZ reaction exhibits dramatic changes
in color due to the oxidation and reduction of the primary
catalyst, ferroin. By tracking the color change, we identify
the phase of each oscillator, which we then map to phase
difference. This change of variables maps the periodic orbits
of the system to fixed points in phase space. Theory predicts
stability of all H/K-predicted fixed points for the homoge-
neous case of identical oscillators. This stability is attributed
to features of the nonlinear function governing interactions be-
tween connected oscillators. By contrast, one H/K-predicted
fixed point is absent in experimental observations and the
remaining attractors are displaced and emerge as distributions
in the ensemble. To quantify the degree of heterogeneity in
our experiments, we fit the phase model to these data using
the intrinsic frequency difference between oscillators and cou-
pling strength as fitting parameters. It is our measurements on
ensembles of hundreds of networks that allows the accumu-
lation of sufficient statistics to classify observed attractors as
belonging to idealized symmetric states, or as arising from
heterogeneity.

By including the measured heterogeneity in our model
we reproduce the experimentally observed distributions. We
make sense of these distributions through a bifurcation anal-
ysis that shows that each attractor is destroyed at a different
threshold of heterogeneity. Critically, this threshold depends
on the spatial distribution of that heterogeneity, in distinction
to the Kuramoto model. Despite this complexity, we find that
this behavior can be understood semianalytically in a manner
analogous to the Kuramoto model by examining dynamics
and bifurcations along a few invariant manifolds provided
by the H/K theorem. We show that hypotheses generated
by idealized symmetry-based theories are relevant to exper-
imental self-organized networks in which both the oscillators
and coupling are fully chemical. We conclude that symmetry-
based theories provide an essential scaffold for systematically
building qualitative intuition and guiding quantitative analy-
sis, even in a highly nonlinear and heterogeneous system.

II. METHODS

A. Experiment

We designed a reaction-diffusion network consisting of a
ring of four diffusively coupled nanoliter volume batch re-
actors laid out in a square 2×2 lattice with nearest-neighbor
coupling (Fig. 1). Previously, we employed emulsions con-
taining the BZ oscillating reaction to study reaction-diffusion
networks [24–31]. However, the diffusive coupling between
surfactant stabilized emulsion drops was difficult to character-
ize, and flow rate fluctuations introduced compositional and
geometric heterogeneity. Both contributed to a large degree
of variability between experiments and precluded performing
experiments on ensembles of hundreds of networks. Here, we
improved reproducibility by manufacturing these reactors to
high precision from elastomeric PDMS using soft lithography
techniques adapted from semiconductor manufacturing and
filled the reactors with the oscillatory BZ reaction as described
previously [20,21], illustrated in Fig. 1 and in Appendix A.
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FIG. 1. (a) Schematic of a network of a ring of four inhibitory
coupled oscillators. Indexing of nodes is indicated as either a number
(1,2,3,4), or a leg of a quadruped (LF, RF, RH, LH) with L left,
R right, F front, and H hind. (b) Schematic of the experimental
system. The reactors are divots in the PDMS, filled with BZ and
sealed between two glass plates. (c) Photograph of BZ-filled four-
ring network. Light illuminates BZ in a channel surrounding the
network, activating the photosensitive catalyst to provide a constant-
chemical boundary condition. (d) Two adjacent reactors (red and blue
traces) in the network oscillating 180◦ out of phase with each other.
Top: Measured transmitted intensity versus time. Bottom: Simulated
oxidized catalyst concentration (mM) versus time. In both, T0 is the
period at steady state of ∼300 s in experiment and ∼250 s in theory
and is indicated by the two arrows.

We have previously shown that PDMS reacts with the BZ-
produced bromine, which leads to a number of deleterious
effects, such as a reduction in the number of cycles of oscilla-
tion before oscillations cease and an increase in the variation
of oscillation period in an ensemble of oscillators [21,32].
These undesirable effects increased with increasing amounts
of PDMS; thus, a key technical advance was reducing the
amount of excess PDMS underneath each reactor to layers
under 2 μm thickness (see Fig. S1(a) of the Supplemental
Material [33]). To obtain a large statistical sample of trajec-
tories we made devices that combined 9 or 16 copies of the
2×2 network [20] (Appendix A). To maximize homogeneity
in the chemical concentrations of each of the reactors, we
simultaneously filled the entire set of networks by pipetting
a drop of BZ that floods all the reactors before sealing the sets
of reactors by clamping the PDMS between two glass plates
(see Figs. S1 and S2 or the Supplemental Material [33], and
Supplementary Movies in Ref. [20]).

The chemical coupling between adjacent reactors arises
from the permeation of chemical species through the in-
tervening PDMS wall and mainly consists of bromine-
induced inhibition, with a weaker activator coupling, per-
haps by bromous acid and the bromine dioxide radical
[20,24–28,30,31,34–38]. As PDMS reacts with bromine, it
is important for the reactors to be separated by thin walls
of PDMS to maintain chemical coupling. After mixing the
BZ reagents, pipetting them onto the PDMS networks, seal-
ing the networks, and placing the sample in the dark for an
induction period of 20 min, it was observed that all reactors

began to oscillate and collectively form spatiotemporal pat-
terns [Fig. 1(d)] [20]. We visualize the oxidation-reduction
dynamics of the BZ reactors using a custom microscope
described in the Supplemental Material [33]. To maximize
contrast, we illuminate the wells with blue-green 515-nm
light. In its reduced state, the ferroin catalyst is red and blocks
the transmission of the light. Upon oxidation, the wells turn
blue, which increases their transmission, allowing more light
to reach a detector.

The reactors form a closed system and consequently the
oscillators have a finite lifetime as the reactants are consumed
and waste products accumulate. However, although the am-
plitude of the chemical oscillations decreases over time, the
oscillators maintain a nearly constant period for a duration
of order 70 oscillations [21]. Further, the response to light
perturbations in this study remained predictable over this time
period, suggesting that the phase-response curve of the chem-
istry was sufficiently steady. Based on this long-term stability,
we assume that the underlying phase dynamics of the indi-
vidual BZ oscillators remains constant during the duration of
the experiment, thus allowing us to study phase relationships
between reactors as they evolve over time (see Movies S1–S4
in the Supplemental Material [33]). Each four-ring network
is isolated from the environment because the reactors are sur-
rounded by a zone of photosensitive BZ that is held at constant
chemical conditions by the application of actinic light [20].
We designed the wells to be small compared to the diffusive
length scale so that we could assume the reactors to be well
mixed in our model, e.g., w <

√
Dτ with w the width of each

square reactor (w = 62 μm), D the diffusion constant of each
BZ chemical (D ∼ 10−9 m2 s−1), and τ the duration of a BZ
oscillation (τ ∼ 300 s).

B. Reaction-diffusion model

We model the dynamics of our oscillator network as a dis-
crete reaction-diffusion system. The following describes the
evolution of the chemical composition c = (x, y, z, u) of each
node i due to intranodal reactions R(c; K) = (Rx, Ry, Rz, Ru)
and internodal diffusive coupling ∝ μ:

ċi = R(ci; K0) + ∇KR|K0
δKi +

4∑
j=1

Ai jμ(c j − ci ),

Ai j =

⎡
⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎦, μ =

⎡
⎢⎣

kek 0 0 0
0 0 0 0
0 0 0 0
0 0 0 k

⎤
⎥⎦. (1)

Dynamics within each node are governed the Vanag-
Epstein (VE) model [34] of the Belousov-Zhabotinsky reac-
tion, a four-species model where x = [HBrO2], y = [Br−],
z =[oxidized catalyst], and u = [Br2]:

Rx(x, y, z) = k2y − k1xy − 2k3x2 + k4x(co − z)

(co − z + cmin)
,

Ry(x, y, z) = −2k2y + k7u + k9z − 3k1xy − k3x2,

Rz(x, z) = −(k9 + k10)z + 2
k4x(co − z)

(co − z + cmin)
,

Ru(x, y, u) = k2y − k7u + 2k1xy + k3x2. (2)
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A set of parameters and reaction rates K = (k1, k2, . . .) con-
trols the model, with K0 representing the average reactor
composition, Table V shows the values used throughout. We
allow for slight heterogeneity by expanding the reaction dy-
namics R about this mean composition; in Eq. (1) ∇KR is the
sensitivity or Jacobian of the reaction dynamics with respect
the parameters and δK is a vector of small deviations from the
mean composition. The assumption of small deviations allows
us to readily incorporate heterogeneity into a phase model
of the oscillator network that we will introduce in Sec. II C.
Previous works on BZ networks have found it necessary to
introduce small amounts of chemical heterogeneity in order
to bring theory into agreement with experiment [25,28] and
a recent study of single BZ oscillators in PDMS has further
quantified variations in oscillator frequency [21]. In principle,
our analysis could have included heterogeneity in coupling
strength as well. However, in previous work, we found that
relatively large volume disparities are needed to substantially
shift the location of fixed points [25].

The matrix A is the adjacency matrix and encodes the
four-ring topology. This matrix assumes no diagonal coupling
between wells. We explored this possible contribution but
found the quality of fit to be insensitive to the ratio of diagonal
coupling to nearest-neighbor coupling over a plausible range
of values (i.e., diagonal < nearest-neighbor coupling). Con-
nected reactors exchange species at a rate proportional to the
difference in concentrations. The diagonal matrix μ dictates
the species-dependent rates of this diffusive coupling. Our
model therefore assumes that no reactions are present within
the PDMS barriers. This is not the case and it has been shown
that bromine reacts with PDMS in a complex manner [32].
We account for the removal of bromine due to reaction with
PDMS by introducing fitting parameters ke and k describing
the chemical coupling between oscillators. We can neglect
storage within the membrane due to the short separations be-
tween reactors O(10 μm) (quasisteady assumption) [25,26].
As described in Sec. II A, PDMS is selectively permeable
to apolar Br2 (variable u in the VE model). Br2 is therefore
the dominant communicable species with coupling rate k. We
additionally consider weak coupling through HBrO2; the ratio
between the two is governed by ke < 1 and is determined
by fitting to data. We examine the implications of these two
different modes of coupling in Sec. II C.

C. Phase model

Since we are interested in studying phase-locking phe-
nomena in the four-ring network, we now simplify our
model through the method of phase reduction. We do so by
parametrizing the time-dependent concentrations through the
phase φ of the limit cycle oscillations exhibited by each reac-
tor, as proposed by Winfree [39] and widely used in various
studies of chemical and biological oscillators [18,25,40–43].
We assume that all oscillators share a common limit cy-
cle with angular frequency ω0, which is determined by the
free-running (uncoupled) dynamics of R(c, K0). The phase
variable therefore naturally progresses linearly from zero to
2π when oscillators are uncoupled such that φ̇ = ω0.

In this framework, the phases of each oscillator are mutu-
ally perturbed by diffusive coupling. The sensitivity of phase

FIG. 2. The interaction functions of coupled BZ oscillators as a
function of phase difference χ = φ j − φi. The sign indicates whether
the interaction is phase advancing (H > 0) or phase delaying
(H < 0). Hu (blue) is the interaction function due to Br2 diffusion
between reactors and Hx (red) is from HBrO2. The total H (purple)
is a weighted mix H (χ ) = Hu(χ ) + keHx (χ ), where ke = 0.05 was
determined by fitting time series data to Eq. (4). Since Hx is largely
zero except for χ between zero and π/2, keHx adds a bump of phase
advancing dynamics near zero, without affecting the otherwise phase
delaying behavior of Br2.

to the addition or removal of chemical species is determined
by the infinitesimal phase-response curve (PRC), which we
derive numerically from the VE model, Eq. (2) [44]. The PRC
is subsequently used to calculate an interaction function H
that encodes the impact on phase of one oscillator by another
as a function of the relative phase between them. It is created
by convolving the PRC with the diffusive flux between those
connected oscillators. In the creation of H , we assume that
the phase difference evolves slowly compared to the phase of
each oscillator and that the oscillators return rapidly to their
limit cycles after perturbations. Additional details are shown
in Appendix C and Refs. [41,42,44].

For BZ-in-PDMS networks, we find through fitting to data
that H has two contributions, each arising from the two com-
municable species such that H = keHx + Hu. Figure 2 shows
both functions and their combination with a best-fit ratio
ke. The interaction functions are signed differently because
HBrO2 (x) serves an excitatory role in the BZ chemistry and,
when added to an oscillator, advances its phase. By contrast,
Br2 is rapidly converted to the inhibitor Br− and delays the
phase of oscillation. The phase dynamics of each oscillator
are now given by

φ̇i = ω0 +
[
δωi + k

4∑
j=1

Ai jH (φ j − φi )

]
. (3)

Following Ref. [41], this framework also permits the in-
fluence of small deviations from the average composition of
the oscillators, δKi in Eq. (1), to show up as shifts in intrinsic
frequency δωi. Similar to the computation of H , each δωi is
the period averaged convolution of the PRC with ∇KRδKi as
the forcing function instead of the diffusive flux. Since there
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(a) (b) (

FIG. 3. (a) The eight categories of invariant manifolds for a
network of four nodes with square symmetry predicted by the H/K
theorem presented in the state space of phase differences is a periodic
three-dimensional (3D) cube, θi j ∈ (0, 2π ]. There are four categories
of phase-locked periodic states (points), three categories of lines, and
one category of planes; each are colored according to their category
in Table II. All linear and planar invariant are periodic; blue lines
correspond to the edges of the planes. (b) The four point manifolds
predicted by theory, Pronk, Pace/Bound, Trot, and Gallop, are repre-
sented (first row) as space-time plots, (second row) as networks with
synchronized clusters indicated by color, and (third row) as a triplet
of phase differences, θ, with units of fraction of a period.

are many possible δK that could lead to shifts in intrinsic fre-
quency, we instead measure differences in intrinsic frequency
between oscillators �ω by fitting to data; however, we note
that the phase reduction formalism makes clear the connection
between δω and the original reaction-diffusion model.

In order to more readily analyze phase-locking behavior
of the model and noting that the right hand side of Eq. (3)
depends only on the phase difference of connected wells, we
change variables from phase to phase difference. We arbitrar-
ily choose the three phase differences θ = (θ21, θ32, θ43) as
the new system variables, where θi j = φi − φ j , and rewrite
the dynamics accordingly, where the heterogeneity of os-
cillators is similarly defined, 	ωi j ≡ δωi − δω j and �ω ≡
(	ω21,	ω32,	ω43):

θ̇21 = 	ω21 + k[H (θ32) + H (−θ21) − H (θ21)

− H (θ43 + θ32 + θ21)],

θ̇32 = 	ω32 + k[H (θ43) + H (−θ32) − H (θ32)

− H (−θ21)],

θ̇43 = 	ω43 + k[H (−(θ43 + θ32 + θ21)) + H (−θ43)

− H (θ43) − H (−θ32)]. (4)

For compactness, we refer to the system of equations (4) as
θ̇ = �(θ; �ω). As each of the phase differences is periodic
on (0, 2π ], the new state space is a 3-torus. Although the
3-torus cannot be drawn in three dimensions, it is equivalent
to a Cartesian cube with periodic boundaries, allowing visual-
ization of the full dynamics [see Fig. 3(a)].

In summary, the reduced model in Eqs. (4) predicts the
evolution of phase difference between oscillators as a function
of the following parameters: (a) diffusive mass transfer coef-
ficient k (s−1), which scales the interaction function H (rad);

(b) coupling strength ratio ke, which determines the shape of
the H function in Fig. 2(a); and (c) differences in intrinsic
frequency between oscillators, �ω (rads−1).

D. H/K theorem

Symmetries place constraints on the behavior of dynamical
systems. The impact of symmetries, once identified, is best
understood through the concept of equivariance. A system
is said to be γ equivariant under the symmetry operation γ

when its dynamics f commute under the action of γ , such
that f (γ x) = γ f (x). This implies that if a system trajectory
x′ exists, so will γ x′.

For a given symmetry, there will also naturally exist a set
of points in phase space that remain unchanged, γ x = x. The
equivariance property then tells us that their dynamics must
also remain the same, requiring that they be either trivially
zero or tangent to the set of unchanged points. These special
regions in phase space are known as invariant manifolds (IMs)
because they are preserved by system dynamics (i.e., all tra-
jectories that begin on IMs will remain so for all time). We
will later show how analyzing the stability of these manifolds
provides an organizing template for understanding the flows
of the system in phase space.

In general, identifying all the symmetries of a large dy-
namical system is difficult. However, in dynamical networks
composed of identical nodes, the system inherits spatial sym-
metries from the underlying network. Analyzing the network
topology therefore readily yields a group of symmetries K
that apply to the dynamics [7,11,12]. In the special case of
oscillators, the temporal periodicity gives rise to an addi-
tional group H corresponding to phase shifts in the trajectory
[11,15]. A group-theoretic result in this field called the H/K
(or H mod K) theorem rigorously proves the existence of
ordinary differential equation (ODE) systems that possess
spatiotemporal patterns arising from the pair (H,K) [3,12,15].
The theorem does not guarantee a given ODE system will
possess all patterns satisfying the theorem, but does provide
a “catalog” of spatiotemporal patterns for which the system
can be searched. For weakly coupled limit cycle oscillators,
however, we are guaranteed an ODE system that possesses
the necessary temporal symmetries because the interaction
functions are time periodic by construction. This restricts us
to patterns for which the oscillators possess identical periods,
which is the focus of this work; however, there can be other
spatiotemporal patterns for which periods are not identical
[12].

The simplest example is a pair of identical oscillators,
which is symmetric under the action of the group Z2 that
exchanges the nodes. The first solution guaranteed by the H/K
theorem is in-phase synchrony, denoted (Z2, Z2). In this state
both nodes are equal and can be interchanged by K = Z2 with
no change to the solution. The other solution is when the two
oscillators are antiphase to one another, denoted (Z2, 1). The
states of the nodes in this solution are never equal due to
K = 1. However, the solution is unchanged by interchange
of the nodes combined with a half-period shift in time by
H = Z2.

The required spatiotemporal and spatial symmetry solu-
tions of the four-ring, or D4 symmetric, system are periodic
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TABLE I. Symmetry required invariant manifolds for an oscil-
lator network possessing square or dihedral 4 (D4) symmetry. D4,
all symmetries of a square; Dp

n , reflection across n diagonals; Ds
n,

reflection across n, vertical or horizontal, axes; Z4, 90◦ rotation; Z2,
180◦ rotation; 1, no operation. The first four classes of manifolds
are phase-locked states. The column marked “Phase” graphically
indicates the spatiotemporal pattern with symbols representing the
phase in percentage of a full cycle: white circle, 0%; white/black,
25%; black circle, 50%; black/white, 75%. The second four classes
of manifolds are symmetrically clustered states, related by arbitrary
phase shifts η1, η2 ∈ (0, 2π ]. The graphical representation of nodes
in the column “Phase” have solid, striped, or dot motifs. Different
motifs are related by an arbitrary phase shift. Similar motifs with
opposite background colors are antiphase with each other.

Point invariant manifolds:
Name

(H,K)

Phase c1 c2 c3 c4

Pronk

(D4,D4)
c(φ) c(φ) c(φ) c(φ)

Trot

(D4,D
p
2 )

c(φ) c(φ + π) c(φ) c(φ + π)

Pace

(Ds
2,Ds

1)A

c(φ) c(φ + π) c(φ + π) c(φ)

Bound

(Ds
2,Ds

1)B

c(φ) c(φ) c(φ + π) c(φ + π)

CW Gallop

(Z4,1)A

c(φ) c(φ + π
2
) c(φ + π) c(φ + 3π

2
)

CCW Gallop

(Z4,1)B

c(φ) c(φ + 3π
2

) c(φ + π) c(φ + π
2
)

Linear invariant manifolds:

(Ds
1,Ds

1)A c(φ) c(φ + η1) c(φ + η1) c(φ)

(Ds
1,Ds

1)B c(φ) c(φ) c(φ + η1) c(φ + η1)

(Ds
1,1)A c(φ) c(φ + π) c(φ + η1) c(φ + η1 + π)

(Ds
1,1)B c(φ)c(φ + η1 + π) c(φ + η1) c(φ + π)

(Z2,1) c(φ) c(φ + η1) c(φ + π) c(φ + η1 + π)

Planar invariant manifolds:

(D
p
1 ,D

p
1 )A c(φ) c(φ + η1) c(φ) c(φ + η2)

(D
p
1 ,D

p
1 )B c(φ) c(φ + η1) c(φ + η2) c(φ + η1)

invariant manifolds, subspaces in which the dynamics remain
confined. Although the theory is more general, we restrict
ourselves to the case in which all the nodes are on the same
limit cycle, as this corresponds to the phase-locked attractors
observed in the experiment. With this assumption the H/K
theorem guarantees that any system of four oscillators with
square symmetry will possess eight categories of invariant
manifolds with varying dimensionality [12]. These states are
readily described in terms of their phase relationships between
pairs, defined as the fraction of a period they are shifted from
each other on their common limit cycle (see Table I). Of
the eight categories, four are phase locked, with fixed phase
relationships among the nodes, three possess one degree of
freedom, and one possesses two degrees of freedom in their
phase relationships, as enumerated in Table I.

TABLE II. Symmetry required invariant manifolds parametrized
by relative phases η1, η2, which vary from zero to 2π . All represen-
tations, modulo 2π , are shown.

Point invariant manifolds:
Name Phase (θ21, θ32, θ43)

Pronk (0, 0, 0)

Trot (π, π, π)

Pace

Bound

(π, 0,−π)
(0, π, 0)

CW Gallop
π
2
, π

2
, π

2

CCW Gallop −π
2
,−π

2
,−π

2

Linear invariant manifolds:

(Ds
1,Ds

1)A (η1, 0,−η1)

(Ds
1,Ds

1)B (0, η1, 0)

(Ds
1,1)A (π, η1, π)

(Ds
1,1)B (η1, π,−η1)

(Z2,1) (η1, π − η1, η1)

Planar invariant manifolds:

(D
p
1 ,D

p
1 )A (−η1, η1, η2)

(D
p
1 ,D

p
1 )B (η1, η2,−η2)

The varying dimensionality of the invariant manifolds
becomes transparent when representing them in the phase
difference space of our model in Eqs. (4). In this coordinate
system, the invariant manifolds are simple, geometric objects:
points, lines, and planes, enumerated in Table II. This transfor-
mation enables the consequences of the H/K theorem on the
dynamics in state space to be visualized in a way that would
be impossible in the full chemical model, Eq. (1).

The four categories of point invariant manifolds find six
representations in phase space. Each can be identified with
gaits of quadrupeds and are enumerated in Table I, and visual-
ized in Fig. 3(b). The first two categories are Pronk, in which
all the legs advance simultaneously, and Trot, for which diag-
onal legs are in phase, and the two diagonal pairs of legs are
half a period out of phase. Pace and Bound form one category.
In Pace, legs on each side are in phase and opposite sides out
of phase, while for Bound, legs on opposite sides are in phase
and the front legs out of phase with the hind legs. We give
them distinct names in order to make contact with quadruped
gaits but because they are essentially identical (related through
a 90◦ rotation), we refer to them interchangeably in the re-
mainder of the text. Clockwise (Counter Clockwise) Gallop
is another category in which the legs advance in a clockwise
(counterclockwise) manner with each leg advancing a quarter
of a period later than the preceding leg.

The remaining four categories are higher-dimensional in-
variant manifolds (lines or planes) containing trajectories that
maintain a subset of the H/K-predicted symmetries. Along
one-dimensional (1D) invariant manifolds, the network can
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FIG. 4. (a) Experimental phase-locked states plotted within state
space. There are three characteristic distributions, associated with
the Pronk, Pace/Bound, and Trot states. They are colored to re-
flect which H/K state they are affiliated with as in Fig. 3, using
a state-specific cutoff determined by simulations detailed later in
Appendix G. (b) First row: Example space-time plots of steady states
in (a). Due to the wide dispersion of the Trot distribution, different
states within the Trot distribution can appear qualitatively different;
the last column shows one such example. Second row: The number
of times a state is observed. Third row: Measured phase difference.
Videos of experiments shown in Movies S1–S4 of the Supplemental
Material [33].

be split into two pairs of reactors, such that within pairs
the reactors are in phase or antiphase, while between pairs
reactors have an arbitrary phase shift. Along two-dimensional
manifolds, two nodes must oscillate in phase while the
other two nodes are at arbitrary phase shifts. These invari-
ant manifolds intersect throughout phase space. For example,
the two-dimensional manifolds intersect the one-dimensional
manifolds, and the 1D manifolds intersect the phase-locked
zero-dimensional manifolds [Fig. 3(a)]. The same manifolds
are plotted alongside experimental data in Fig. 4.

The H/K theorem predicts the existence of these in-
variants; however, it neither prescribes their stability nor
precludes the existence of others. To address questions of
stability, we use our specific model of the oscillators and their
interactions.

III. RESULTS

A. H/K and homogeneous phase model predictions

Using the H/K theorem’s predictions as a jumping off
point, we first examine the stability of D4’s invariant man-
ifolds in the phase model, Eqs. (4). As discussed above,
in phase-difference space, the invariant manifolds with no
degrees of freedom—Pronk, Bound, Trot, and Gallop—are
steady states rather than high-dimensional limit cycles. Linear
stability analysis reveals that the system in Eqs. (4) is multi-
stable, with each one of the point H/K manifolds forming a
competing attractor.

We briefly demonstrate the analysis here; further de-
tails are in Appendix E. We first compute the Jacobian
of the system, J (θ) = ∇θ�(θ). The steady states that sat-
isfy �(θ†) = 0 are then linearly stable provided the real

components of the eigenvalues λ of J (θ†) are negative. Con-
veniently, multiple attractors lie on the line so we consider
θη = (η, η, η). This line includes Pronk (η = 0), Gallop (η =
π/2), and Trot (η = π ). The eigenvalues for these three cases
are then λ = {−2(H ′(η) + H ′(−η)),−(H ′(η) + H ′(−η)) ±
i(H ′(η) − H ′(−η))}. The stability of each is therefore gov-
erned by the sign of a single quantity H ′(η) + H ′(−η). From
the plot of the H function in Fig. 2, we see that H ′(η) > 0
for η = 0, π/2, and π , so the eigenvalues are negative. Sim-
ilarly, the conditions for the stability of Bound/Pace rely on
H having positive slope at both zero and π , which it does.
Consequently, the system will converge to at least these four
states depending upon initial condition. By contrast, in the
Kuramoto case H ∼ sin(), Trot would be an attractor, Pronk
a repeller, Pace/Bound a saddle, and Gallop a neutrally stable
fixed point [45].

Simulations initiated from an exhaustive set of ∼105 initial
conditions further show that each initial condition flows to
one of these phase-locked attractors [Figs. 5(a) and 5(b)],
indicating that there are no other attractors besides the point
invariant manifolds predicted by the H/K theorem. We nu-
merically determined the basins of attraction of each attractor
by dividing the 3-torus into a fine grid and identifying each
initial point with the attractor to which it flowed, as shown in
Figs. 5(a) and 5(b). The Pronk, Bound, and Gallop basins are
smooth, closed volumes while the Trot basin fills the rest of
the state space [Fig. 5(b)]. The state with the largest basin of
attraction is Trot, followed by Gallop, Bound, and Pronk. The
attraction basin of the Bound state is anisotropic and aligned
with the (Ds

1, Ds
1) invariant manifolds [Figs. 5(a) and 6(a)].

Figures 5(a) and 6(b) reveal that trajectories remain near the
(Dp

1, Dp
1 ) invariant manifolds as they flow to Trot. We find

the convergence time to these attractors, approximated as the
reciprocal of the maximum real eigenvalue of the attractor, are
within experimentally relevant time frames. The convergence
times, as measured in oscillation periods, for each attractor
are 2.8 for Trot, 6.0 for Gallop, and 19.0 for both Bound and
Pronk. In addition to these attractors, a direct numerical search
for all roots of Eqs. (4), �(θ†) = 0, revealed many additional
steady states (158 saddle points and 4 repellers) that give
further structure to the state space. All states are enumerated
in Table SI and plotted in Fig. S6 of the Supplemental Material
[33].

Theory predicts that the network’s trajectories flowing to-
wards its attractors are constrained and shaped by higher-order
invariant manifolds [Fig. 6(a)]. To further quantify how the
1D and two-dimensional (2D) manifolds guide and structure
dynamics, we calculate their transverse stability. We do so
by leveraging the simple geometric forms of the invariant
manifolds and the phase model in Eqs. (4) to perform a co-
ordinate transformation that decomposes the dynamics into
components tangent and normal to the manifolds. Details of
this linear stability analysis are shown in Appendix E and
Table SII in the Supplemental Material [33]. We find that the
majority of the (Ds

1, Ds
1) and (Dp

1, Dp
1 ) manifolds are attract-

ing; this causes nearby trajectories to collapse and remain on
them (Fig. 6). The manifolds also exhibit small regions of re-
pulsion that contain saddle nodes and demarcate separatrices.
In this way, the theory combines the restrictions of symmetry
and the unique system dynamics to predict both the basins of
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(b)(a) (c) 

(d) 

FIG. 5. Basins of attraction. States are labeled as in Fig. 3. (a) Simulations of Eqs. (4) show that all trajectories converge to the H/K-
predicted attractors (point invariant manifolds), Pronk/Bound, Gallop, or Trot, depending on initial condition. Video of different perspectives
in three dimensions is shown in Movie S5 [33]. The corresponding plot of all experiments is shown in Movie S6 [33]. (b) Basins of attraction
of homogeneous model. The phase space is divided into regions � colored by the attractor to which all initial conditions in that set of points
converges. (c) A dense, uniform sampling of initial conditions shows 89.9% go to Trot, 6.56% to Rotary Gallop, 3.33% to Bound/Pace, and
0.231% to Pronk. (d) The probability P(�F |�I ) that an experiment, which began in a theoretical basin �I , converges to an attractor in region
�F . We list the number of observations, N , in the row above the chart. The plot shows that initial conditions for gallop were rarely accessible
experimentally and did not converge to gallop. In contrast, of the 148 states initially in the theoretical Trot basin, 95.3% converged to that
attractor. Of the remaining 4.7%, 1.35% went to Pronk, 1.35% went to Bound/Pace, and 2.03% went to Other.

attraction of the attractors and the symmetric, clustered
transient transitions along the linear and planar invariant
manifolds that connect the attractors. We note that the H/K
theorem does not preclude the existence of other invariant
manifolds. In fact, near the Gallop attractor, we observe tra-
jectories coalescing onto a 2D surface [Fig. 5(a)].

B. Experimental observations of dynamics

To compare H/K and phase model predictions with ex-
periment, we mapped the transmitted light intensity shown
in Fig. 1(d) to phase by attributing the time of a reactor’s
peak oxidation to φ = 2π and linearly interpolating between

(a) (b) (c)

FIG. 6. Dynamics along higher-order H/K invariant manifolds in experiment and simulation. (a) Space-time plots from an experiment and
simulation with a near-Pronk initial state transitioning to Pace. States form two symmetric clusters corresponding to the (Ds

1, Ds
1)A invariant

manifold. In the lower panel the experimental trajectory is shown as an arrow traveling through a 2D slice of state-space superimposed over
the theoretical velocity field. Video of experiment synchronized to progression along space-time plot and trajectory in state-space is shown
in Movie S8 [33]. (b) Space-time plots from an experiment and simulation with a near-Pronk initial state transitioning to Trot. The transition
corresponds to the (Dp

1, Dp
1 )A invariant manifold. Video of experiment synchronized to progression along space-time plot and trajectory in

state-space shown in Movie S9 [33]. (c) The invariant manifold surfaces attract or repel in a state-dependent manner given by the computed
maximum transverse eigenvalues λ∗. When positive (negative), nearby trajectories are repelled (attracted) from (to) the invariant manifold.
Both the 2D (Dp

1, Dp
1 )A and 1D (Ds

1, Ds
1)A invariant manifolds are largely attracting. Video of 3D perspective of plot is shown in Movie S10

[33].
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these peaks. We subsequently calculated the three phase dif-
ferences (θ21, θ32, θ43). We conducted 318 experiments of
which 186, or 58%, phase locked following criteria defined
in Appendix B. The complex, non-phase-locking trajecto-
ries were not analyzed beyond plotting a histogram of their
phase differences over time in Fig. S5 of the Supplemental
Material [33]; the following examines the dynamics of the
phase-locked cases.

We first compare the phase-locked steady states observed
in experiment to theory. We do so by plotting the phase dif-
ferences at steady state in the 3D state space of the system
[Fig. 4(a)]. We find clusters of steady states around three of the
four attractors predicted by theory: Pronk (blue), Bound/Pace
(purple), and Trot (red) [Fig. 4(a)]. The distributions around
Pronk and Bound/Pace are tightly centered. Consequently,
space-time plots of their spatiotemporal dynamics [Fig. 4(b)]
are visually indistinguishable from the Bound and Pronk
states in theory [Fig. 3(b)].

In contrast, the Trot-centered distribution is more diffuse.
At its furthest extent, the spatiotemporal dynamics no longer
qualitatively resemble the symmetry-predicted dynamics, as
exemplified in Fig. 4(b), which presented a challenge in clas-
sifying the observed phase-locked states. To classify these
states, it was necessary to perform hundreds of trials to ac-
cumulate enough statistics to recognize that attractors formed
clouds of points distributed around the symmetry-predicted
states. To help with the classification, we also performed
simulations to be discussed more fully in Sec. III C. Briefly,
simulations show that the region of the Trot attractor expands
substantially in response to heterogeneity. We determine the
bounds of this region for Trot, and the other attractors, through
both large scale computation and bifurcation analysis. We
then use the extent of those regions to classify our experi-
mental data. We find that nearly all of the points distributed
around Trot are instances of the original attractor subject to
heterogeneity.

Finally, we did not observe the theoretically predicted Gal-
lop attractors. Instead, the region of state space where we
would expect Gallop is completely empty [Fig. 4(a)]. This
indicates Gallop is either unstable or absent altogether. Like
Trot, we will explain this discrepancy between theory and
observation further in Sec. III C.

We can further assess the agreement between theory and
experiment by examining the correspondence between initial
condition and steady state. The theoretical plot of the basins of
attraction summarizes this relationship by mapping each point
in phase space to an attractor [Fig. 5(b)]. Experimental initial
conditions were explored by applying phase-shifting pertur-
bations to the networks at the beginning of the experiment
using the method described in Ref. [29] and Appendix A. To
compare, we plot the observed probability of converging to
each attractor given the initial condition’s basin [Fig. 5(c)].
Nearly all experiments that began in the theory-predicted
basin flowed to the corresponding attractor. The exception was
Gallop; trajectories that began in that basin flowed instead to
Trot. We found this basin difficult to sample experimentally,
so it is difficult to prove its existence or absence based on these
observations alone. In the next section we discuss simulations
incorporating heterogeneity that shed some light on these
observations.

Finally, we look for evidence of the higher-order IMs in
our experiment. Since theory predicts the transverse dynamics
of the (Ds

1, Ds
1) and (Dp

1, Dp
1 ) manifolds to be largely attract-

ing, we expect them to be observable. Strikingly, we find
trajectories on these manifolds and, in the case of (Dp

1, Dp
1 ),

find the trajectories to qualitatively match theory in that plane
[Figs. 6(a) and 6(b)].

C. Heterogeneous phase model and bifurcation analysis

We hypothesized that the two main discrepancies between
theory and experiment (the absence of gallop and the large
cloud of steady states around trot) can be explained by allow-
ing for heterogeneity in the intrinsic frequencies of Eqs. (4).
We tested this by first measuring the degree of heterogene-
ity by fitting Eqs. (4) to experimental data with intrinsic
frequency difference 	ω, coupling strength k, and inhibitory-
excitatory ratio ke as fitting parameters (details are presented
in Appendix C). We report the outcome as a distribution
of dimensionless frequency differences 	ω = 	ω/(kHmax),
where 	ω is scaled, both by the coupling strength k and the
maximum amplitude of the interaction function, Hmax. We
introduce the latter to facilitate comparison with the Kuramoto
canonical case of sinusoidally coupled oscillators, for which
the interaction function has unit amplitude (Fig. 7). We antic-
ipate qualitative changes in dynamics when the heterogeneity
exceeds the “height” of the interaction function [18,46]. We
find that the distribution of 	ω is approximately Laplacian
with scale parameter b = 0.244 or standard deviation σ =√

2×0.244 (Fig. 7). Previous work measured the distribution
of intrinsic frequencies of isolated wells in the same BZ-
in-PDMS system to have a 3% coefficient of variation [21].
This variation was attributed to slight differences in chemical
concentration and boundary conditions created by the applied
blue light [47]. By nondimensionalizing, we see that this small
degree of heterogeneity is influential because the coupling is
sufficiently weak. Figure 7(c) shows the fraction of experi-
ments that possess a given overall heterogeneity |	ω| or less
(i.e., while the mean of ωi j is zero, we find that it is unlikely
that all frequency differences in a network will be zero). We
subsequently incorporated heterogeneity into simulation by
sampling from this distribution multiple times for each initial
condition.

Figure 8(a) shows the resulting steady states in state space.
The simulations produce a distribution of steady states with
multiple clusters, four of which are centered about the ex-
pected H/K attractors. Qualitatively, the spatial extent of each
is distinct. For example, Pronk is narrow while Trot is dis-
persed. We associate a steady state with an H/K attractor if
it is within an attractor-specific cutoff distance determined by
examining the density of steady states as a function of distance
from an attractor. Steady states beyond the cutoff distances for
all H/K attractors are classified as “Other” (Appendix G).

In comparing identified H/K steady states in hetero-
geneous simulations to those in homogeneous (	ω = 0)
simulations, we see marked changes in the relative oc-
currences of each H/K state. The added heterogeneity
dramatically reduced the presence of Gallop. Homogeneous
simulations predicted that 6.0% (N = 5399) of trajectories
would converge to Gallop, compared to 0.259% (N = 34 713)
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FIG. 7. (a) Example experimental trajectory converging to steady
state (circles), and best-fit phase model (solid line). The fit model
required heterogeneity 	ωi j �= 0 to fit data. For comparison, the
steady-state phase difference θ† = (π, π, π ) of the homogeneous
phase model is shown (dashed horizontal line). (b) Distribution
of best-fit dimensionless intrinsic frequency differences 	ω =
	ω/kHmax, nondimensionalized by the coupling rate k and amplitude
of the interaction function Hmax (Fig. 2). The distribution is ap-
proximately Laplacian with scale factor b = 0.2441. (c) Cumulative
probability distribution of |�ω| from (a). Lines denote the average
heterogeneity 〈|�ω

∗|〉 at which the bifurcation analysis predicts the
attractors: Gallop (green), Pronk (blue), Pace/Bound (purple), and
Trot (red) will lose stability (Table III). This predicts the fraction
of experiments that can support a given attractor given the inherent
heterogeneity.

in heterogeneous simulations, a 23-fold decrease. In experi-
ment this drops to 0% (N = 186). In contrast, Bound/Pace and
Pronk experience, respectively, 2.1- and 3.2-fold decreases
and Trot experiences a 1.1-fold increase through the elim-
ination of Gallop. The share of steady states classified as
Other is 3.43% in heterogeneous simulations, comparable to
the 2.15% observed in experiments. It is unclear whether all
the Other states should be classified as new states generated
by frequency heterogeneity, or as states that are improperly
classified according to the criteria described in Appendix G.
However, we note the creation of new fixed points when
heterogeneity is introduced. These new steady states appear as
clusters labeled Other in Fig. 8 but are not associated with any
of the H/K attractors. Numerical continuation of Pronk con-
firms the creation of a new fixed point at finite heterogeneity,
but we did not explore its properties in detail. Finally, het-
erogeneous simulations recreate the observed cloud of steady
states around Trot. Of the simulations that phase locked, we
observed that those with the largest heterogeneity tended to
exhibit increased convergence time, as is generically expected
near a saddle node on an invariant circle bifurcation [46].

TABLE III. Summary of bifurcation analysis. Different patterns
of heterogeneity �ω = αW are considered for positive and negative
values of α. The second column shows the corresponding spatial
distribution of intrinsic frequencies; nodes with identical colors have
identical frequencies. The critical values are reported as the dimen-
sionless ordered pair [ᾱ∗

+, |ᾱ∗
−|], where ᾱ = α/(kHmax). The final row

reports the average, dimensionless heterogeneity 〈|�ω
∗|〉 at which

bifurcations occur.

To gain a more quantitative understanding of each attrac-
tor’s response to heterogeneity, we examined the response
to frequency heterogeneity through a bifurcation analysis.
Since we have three potential bifurcation parameters, �ω =
(	ω21,	ω32,	ω43), we chose a representative subset of pos-
sible directions W with symmetries inspired by D4 such that
�ω = αW; Fig. 8(b) shows the directions considered. These
directions either break or coincide with the point symmetry
of the attractors. We will show that the selection of direc-
tions we chose covers the most extreme cases, providing a
framework for understanding the overall sensitivity of an at-
tractor. Numerical continuation is used to identify the location
of the system’s attractors θ†(α) as α is varied. The critical
values α∗ at which stability is lost are reported in Table III
for the system’s attractors. All critical values are reported in
dimensionless terms using Hmaxk as the scale (Fig. 2). We
also summarize Table III’s content graphically by plotting
the points at which attractors are eliminated or lose stability
through bifurcations θ†(α∗) and connecting these points to
form closed surfaces; the average magnitude of heterogene-
ity 〈�ω

∗〉 reported measures the overall robustness of each
attractor to heterogeneity [Fig. 8(c)]. In all cases, we find that
a finite amount of heterogeneity is needed to eliminate the at-
tractor; thus, all attractors are structurally stable. Notably, the
average heterogeneity needed to eliminate Gallop is exceeded
during ∼80% of experiments [Fig. 7(c)].

This analysis reveals important qualitative differences be-
tween the attractors as well. The critical values α∗ at which
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FIG. 8. (a) Phase-locked steady states of simulations with heterogeneity �ω sampled from the experimentally measured distribution
(Fig. 7). The steady states are unimodally distributed about each H/K attractor. We associate a steady state with an attractor if they are within
ones of these distributions or as “Other” (black) (Appendix G). Compared to homogeneous simulations, occurrence of Gallop is reduced by a
factor of 23.5 and Trot becomes dispersed over a large volume (Fig. 5). Videos of 3D perspectives of plots are shown in Movies S11 and S12,
respectively, in the Supplemental Material [33]. (b) Paths traced out by the Pace attractor in response to two patterns of heterogeneity indicated
by the blue glyphs. Each pattern moves Pace along a different linear invariant manifold. The mesh surface shows the volume explored by Pace
for all perturbations that we consider. (c) Schematic of all directions in heterogeneity W used during bifurcation analysis. (d) Surfaces of the
phase differences θ† at which an H/K attractor loses stability due to a heterogeneity induced bifurcation. These surfaces bound distributions
of steady states in (a). The surfaces are labeled by the average magnitude of heterogeneity 〈|�ω

∗|〉 at which loss of stability occurs. Note that
the surfaces have phase differences below zero, as the surfaces are centered about points containing zero values. As a result, the surfaces about
Pronk, Bound, and Pace define eight, four, and two volumes of points in (a), respectively.

bifurcations occur depend strongly on W for each attrac-
tor. These bifurcations naturally involve collisions with the
system’s many unstable fixed points that have intricate trajec-
tories in phase space. Despite this complexity, we now show
that an upper bound on α∗ can be found for a few special, but
informative, cases that link the robustness of attractors back to
the interaction function H (Fig. 2). To do so, we leverage the
system’s 1D invariant manifolds using ideas from equivariant
bifurcation theory [48]. In the following three examples, we
will follow the same template: an attractor will be chosen and
then a spatial pattern of heterogeneity W will be chosen that
aligns with a 1D invariant manifold that intersects with that
attractor. Direct substitution in Eqs. (4) will then yield a 1D
dynamical system parametrized by the heterogeneity strength
α. This procedure identifies an upper bound because while the
1D picture identifies bifurcations, stability may change prior
due to interactions with fixed points that do not reside on that
manifold (and therefore go untracked during the analysis).

We first consider Pace, θ = (π, 0, π ). The inset of Fig. 8(c)
shows the path traced out by Pace in phase space due to
two spatial distributions of intrinsic frequency. The first,
W = (1, 0,−1), is parallel to (Ds

1, Ds
1)A and corresponds to

cluster-preserving perturbations (see Table II). The second,
W = (0, 1, 0), is directed along (Ds

1, 1)B and disrupts the syn-
chrony of Pace’s clusters. We analyze the cluster-preserving
case by substituting in θ = (η, 0,−η) into Eqs. (4), where η

is the phase difference between clusters. The reduced dynam-
ics are then η̇ = α + k[H (−η) − H (η)] ≡ α + kψ (η). Along
this manifold, the crossing at η = π is Pace. Plotting η̇ in
Fig. 9(b) readily shows how shifting the dynamics with α will
result in bifurcations that eliminate the antiphase fixed point
at α∗ = ±ψmaxk, or in dimensionless terms, ᾱ∗ ∼ ±1.

For the second perturbation direction, we consider dynam-
ics along (Ds

1, Ds
1)A for which the intercluster phase difference

is π but the intracluster phase difference is free to change, θ =
(π, η,−π ). The dynamics reduce identically, but the interpre-
tation of η is different. Now, η = 0 is Pace and local minima
and maxima on either side determine α∗. Since these local

(a)

(b)
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FIG. 9. Dynamics η̇ = α + ψ (η; k) along a selection of invariant
manifolds scaled by coupling strength k and Hmax: (a) intersec-
tion of planar IMs (Dp

1, Dp
1 )A and (Dp

1, Dp
1 )B, θ = (−η, η, −η),

(b) (Ds
1, Ds

1)A, θ = (η, 0, −η) and (Ds
1, 1)B, θ = (π, η, −π ), and

(c) (Z2, 1), θ = (η, π − η, η). Each is used to analyze a different at-
tractor subject to heterogeneity α: (a) Trot (η = π ), (b) Pace (η = π

for cluster-preserving perturbations, η = 0 for cluster breaking), and
(c) Gallop (η = ±π/2). The labeled extrema (red) correspond to the
heterogeneity |ᾱ| at which the fixed points of interest are annihilated
through bifurcations.
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maxima < ψmax, we conclude that Pace is less structurally ro-
bust to cluster-breaking heterogeneity, which is corroborated
by the full numerical continuation analysis (Table III).

We can readily extend this approach to the other attrac-
tors. For Trot, resilience to cluster-preserving perturbations
W = (1,−1, 1) is found by examining dynamics along θ =
(η,−η, η), which is the intersection of the two planar IMs
(Dp

1, Dp
1 )A and (Dp

1, Dp
1 )B, where η is the phase difference

between the two diagonal clusters. Qualitatively, the dy-
namics are identical to those considered for Pace, η̇ = α +
2k[H (−η) − H (η)]. However, a factor of 2 strengthens the
effective coupling strength for Trot. It therefore requires twice
the heterogeneity to be eliminated, ᾱ∗ ∼ ±2 (Fig. 9). Trot is
the strongest in this direction; Table III shows that it is more
susceptible to perturbations with clustered rows or columns.

Finally, we consider Gallop, which is only intersected
by one invariant manifold, (Z2, 1). Letting θ = (η, π − η, η)
and W = (1,−1, 1), the dynamics simplify to η̇ = α +
k[H (−π − η) + H (−η) − H (η) − H (π − η)]. These dy-
namics are compared to the reduced dynamics of Pace and
Trot in Fig. 9, where the fixed points at η = ±π/2 are the two
Gallop states. They vanish when ᾱ exceeds the local maxima
or minima near them, ∼ ± 0.34, which is less than that which
annihilates the in-phase and antiphase fixed points for Trot
and Pace.

Numerical continuation shows that Gallop’s stability
changes before annihilation at ᾱ∗ ∼ ±0.18 (Table III). Thus,
the invariant manifold analysis gives only an upper bound.
Still, the semianalytical examination facilitates intuition about
how different interaction functions H might impact stability
and robustness to heterogeneity. For example, if H ∼ sin( ),
then dynamics along (Z2, 1) simplify even further to η̇ = α,
which is a marked qualitative difference between the BZ-in-
PDMS system and an idealized Kuramoto network.

Between the full numerical continuation and IM analyses,
we arrive at an approximate ranking for the relative robustness
of the attractors that agrees with experimental observations (in
order of most resilient against heterogeneity to least): Trot,
Pace/Bound, Pronk, and Gallop. As seen within Fig. 7(c) the
theory predicts Trot was stable for nearly all experiments. In
contrast, Gallop was rarely stable.

IV. DISCUSSION

We theoretically and experimentally studied a four-ring
network of self-driven oscillators. We utilized the H/K the-
orem to enumerate steady states and other invariant manifolds
(IMs) required by symmetry. We developed a phase model
faithful to the experimental BZ-in-PDMS system that in-
cluded chemical details and treated the heterogeneity of the
oscillators which allowed us to predict the stability of the
steady states and manifolds, and to describe the dynamics.
Each invariant manifold predicted by the H/K theorem breaks
some symmetry of the underlying network; a notable fea-
ture of our experimental system is that the combination of
inhibitory and excitatory interactions renders many of these
structures stable and therefore experimentally accessible. In-
hibitory interactions generated by the high permeability of
PDMS to bromine are responsible for the symmetry breaking
that stabilizes the Trot state in which every oscillator is out

of phase with its nearest neighbor, and excitatory interactions
are responsible for stabilizing synchronized nearest neigh-
bors in the Pronk and Pace/Bound states, in which either all
(Pronk) or half of the oscillators (Pace/Bound) are in phase.
In a purely excitatory-coupled system, all invariant manifolds
would still exist, but a fully synchronized (in-phase) state
would be the only stable state and therefore would dominate
observations. The influence of the other invariant manifolds
would be limited to transient behavior. The BZ-in-PDMS
network possesses both excitatory and inhibitory coupling,
which allowed us to experimentally quantify the coexistence
of multiple competing attractors in the network. We note
that the complexity of the BZ-in-PDMS interaction function
is minimal in the sense that, when placed in the four-ring
topology, it renders all H/K fixed points as attractors while
producing no additional ones. This feature is serendipitous but
underscores the potential benefits of exploring real oscillators
rather than idealized ones. By contrast, the Kuramoto model
considered in the Supplemental Material [33] (Fig. S7) lacks
the rich multistability even though all of the H/K-predicted
fixed points are necessarily identical to those in the BZ net-
work.

On the one hand, while previous studies on biological
networks have demonstrated some correspondence between
observed spatiotemporal patterns and topology, it is dif-
ficult to contextualize the observations because the living
networks lack a quantitative model of the oscillators and
their coupling, and the experiments lacked steady-state con-
ditions [5,49]. On the other hand, electromechanical [7],
electrical [6,50], or electrochemical [51] based oscillator
networks leverage components engineered to high precision
with which the oscillator dynamics and coupling details are
known, facilitating transparency between topology and dy-
namics. However, these systems follow different engineering
principles than do biological and synthetic chemical systems
and therefore do not shed light on the challenges of building
autonomous materials. Hybrid systems that mediate coupling
between chemical oscillators through a computer provide a
unique degree of control over network dynamics [52,53],
including some studying similar networks, including the four-
ring network studied here [54–58], but using a computer
to control interactions between chemical oscillators means
these systems are neither autonomous nor self-organizing.
Here, we build on the foundation of the BZ chemical os-
cillator, which is perhaps the best characterized chemical
oscillator in isolation [21,34], to predict network-level phe-
nomena. Our work simultaneously builds an autonomous,
self-organizing reaction-diffusion system with multiple at-
tractors and addresses the role of heterogeneity on those
spatiotemporal patterns. We measure the dimensionless het-
erogeneity (Fig. 7), which is the key parameter for controlling
the existence of phase-locked states. Through its union of
theory and experiment, our work provides an essential linkage
between the biological and the engineered.

Kuramoto’s work on heterogeneous, weakly coupled pairs
provides the essential framework for understanding how
frequency differences between oscillators lead to desynchro-
nization [18]. In larger networks this intuition is obfuscated
by the higher dimensionality of the system. We show that this
complexity can be reduced to that of the pairwise problem
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by judiciously choosing particular spatial patterns of het-
erogeneity that preserve invariant manifolds of the system,
and then examining dynamics and bifurcations along them.
This analysis confirmed the experimental and computational
observations that each attractor had a different response to
heterogeneity and that this response depended on the spatial
pattern of frequency heterogeneity. Systematically examining
heterogeneity for each invariant manifold allows us to use
symmetry-derived features of the dynamics to understand the
impact of symmetry-breaking heterogeneity. More broadly,
our work demonstrates a general methodology, applicable
to many networks and oscillator systems, for analyzing the
impact of heterogeneity in nature and tailoring its use in
engineered systems.

Prior work using group theoretic approaches [8,9] and
equitable partitions [59,60] has been particularly fruitful in
systematizing the identification of topology-required clus-
tered states. Once symmetries are identified, a master stability
function approach is used to determine transverse stability of
identified clustered, limit cycle solutions [61]. In contrast, we
use the H/K theorem to identify not just clusters, but spa-
tiotemporal patterns described by phase relationships between
oscillators. In principle, systematizing application of the H/K
theorem to the large, arbitrary networks considered by Pecora
et al. [8] is possible, but to our knowledge has not been
achieved. Another difference with prior work is that we create
a phase model of the dynamics in the weak coupling limit,
further reduce the dynamics by examining only the relative
dynamics between oscillators, and then assess the stability
of the fixed points and higher-order invariant manifolds that
emerge. However, we note that both the prior work and ours
are quantifying the same quality of the network, the ability
to phase-lock parts of a network. In our case, as we limit the
theory to weak coupling, phenomena associated with higher
coupling strength are lost, but we gain the ability to semian-
alytically analyze bifurcations along 1D manifolds, providing
intuition that may be hard to extract via other methods. We
note that corrections to the phase model can be systematically
introduced [42], but at the cost of adding additional degrees of
freedom.

Heterogeneity can impact dynamics in unexpected ways.
A recent experimental work on an electromechanical system
[62,63] has demonstrated that heterogeneity leads to robust-
ness in the face of system noise through converse symmetry
breaking [64]. This work explored the phenomena of sym-
metry arising from system asymmetry in inertial oscillators;
however, it is not known whether there is an analog in the
case studied here of weakly coupled networks for which
the dynamics are overdamped. Other examples of coupled
oscillators also note qualitatively different synchronization
phenomena in the face of heterogeneity between strongly and
weakly coupled oscillators [53]. Our measurements confirm
that we are in a weakly coupled regime and thus our analysis
is valid.

Finally, we note limitations of the current study. First,
complete experimental control of initial conditions was not
achieved. The use of a photosensitive catalyst coupled to a
computer controlled light projector was excellent at setting
in-phase or antiphase synchrony in experiment. For reasons
we have yet to understand, setting other initial conditions,

e.g., Gallop, with the same method often failed. As a result,
we could not unambiguously determine if Gallop was fully
unstable or possessed an extremely small basin of attraction.
Second, experimentally validating the response of fixed points
to controlled addition of structured heterogeneity is a natural
extension of our work. Control of both initial conditions and
heterogeneity would allow an efficient search for the steady
states created by heterogeneity, labeled “Other,” in Fig. 8(a).
Experimentally implementing both is planned as a continu-
ation to this work. Last, we note that the finite lifetime of
an experiment, ∼70 oscillations, is insufficient to observe
steady states with long convergence times. While sufficient
to observe states which are robust to heterogeneity—Pronk,
Bound/Pace, and Trot—it may hinder observation of sensitive
states that are on the verge of annihilation through a bifurca-
tion. Use of microfluidic reactors that are fed new reactants
to create truly open chemical systems, currently yet to be
developed, would allow much longer experiments to explore
these dynamics.

V. CONCLUSION

Understanding how network structure controls spatiotem-
poral pattern formation remains a central problem in network
science. Analysis of spatial network symmetries has led to
great progress by illuminating mechanisms behind the emer-
gence of clustered, dynamical states. Specifically, tools based
on group theory [8,9] and equitable partitions [59,60] have
been particularly fruitful in systematizing the identification of
topology-required clustered states. Theoretically generalizing
these methods to predict behaviors in real systems, with math-
ematically imperfect network structure, is a largely untouched
topic, but one essential for elucidating the engineering princi-
ples necessary to exploit network symmetries in applications
involving chemical networks.

This work represents the most thorough experimental study
of a reaction-diffusion network to date with an order of
magnitude increase in the longevity of each experiment and
the number of experiments performed. Within this work
we find consistencies and discrepancies between theoretical
predictions and experimental observations of a small reaction-
diffusion network of oscillators assuming perfect square
symmetry. The majority of attractors are distributed about
the values predicted by assuming that the network’s nodes
and connections are homogeneous. The distributions possess
widely varying shapes and one attractor predicted by the
idealized theory was altogether absent. We account for these
discrepancies between the theory of homogeneous oscillators
and experiment by incorporating heterogeneity in the intrin-
sic frequency of the oscillators using simulations, numerical
continuation, and a quasianalytical bifurcation analysis of a
phase model in a fashion inspired by Kuramoto. Our multi-
faceted approach infers there is a small degree of chemical
heterogeneity in the system, producing only 3% variations in
intrinsic frequencies [21], but which was sufficient to cause
major changes to some attractors predicted by symmetry
while only weakly altering others. The analytic method we
apply is generalizable to any system modeled by a phase
model and any topology, requiring only that a number of
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1D invariant manifolds be identified. Further, we demon-
strate that with proper accounting of heterogeneity, symmetry
can be used to rationally engineer spontaneously organiz-
ing reaction-diffusion networks, an important category that
includes biological systems such as neural networks. In par-
ticular, we studied a ring of four chemical oscillators, which
symmetry-based theories predict are capable of generating the
spatiotemporal patterns known as the gaits of a quadruped. In
this work, we experimentally validate that symmetry dictates
function in weakly coupled reaction-diffusion systems even in
the presence of heterogeneity.
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APPENDIX A: EXPERIMENTAL METHODS

1. Network fabrication

The microfluidic reaction-diffusion network was made out
of four adjacent reactors embedded in polydimethylsiloxane
(PDMS). The reactors are formed out of divots in PDMS that
we fill, and then seal with a single piece of glass, forming
a common lid for the array. We manufactured these divots
using a soft lithographic process in which PDMS is cured
while pressed against an inverse (positive) of the divots made
out of a photoresist deposited onto a silicon wafer. This was
performed as previously published [20], with the exception
of one adaptation described below. This generates a glass
microscope slide coated with many reactors organized into
networks of four reactors, shown in Figs. 1(b) and 1(c) and in
Figs. S1 and S2(a) of the Supplemental Material [33].

The dimensions chosen for the network allow for ro-
bust coupling between the four nodes in ring topology.
By adjusting the sizes and distances between reactors we
found that rectangular reactor dimensions 62 μm × 62 μm ×
30 μm (L × W × H) with side-to-side distance 26 μm re-
sulted in strong coupling. The network reactors are organized
in a 2×2 grid [Figs. 1(b) and 2(c)] in such a way that nearest-
neighbor reactors possess much more shared surface area
relative to next-nearest neighbors across the diagonal. This
results in a ringlike connectivity, where coupling between
nearest neighbors is stronger than across the diagonal. The
rectangle of BZ surrounding the network [Fig. 1(c)] is forced
into a steady state, setting the concentration of chemicals
surrounding the network. During each experiment we observe
9 or 16 coupled, individual networks, separated from one

another by controlled barriers (see Figs. S1(b) and S1(c) of
the Supplemental Material [33]).

The only alteration of the procedure in fabricating the
PDMS networks published [20] was to change the way in
which the PDMS was pressed and cured: instead of a 15-kg
lead brick applied for 12 h followed by baking in a 70 ◦C oven,
we used a thermal press applying 90–113 kg set at 70 ◦C for
2.5 h. This reproducibly kept the PDMS flash at the bottom
of the wells to less than 2 μm and reduced the likelihood of
wafer fracture (see Fig. S1(d) of the Supplemental Material
[33]).

2. Sample holders

In a previous work, BZ laden PDMS reactors were sealed
using an acrylic plastic clamp [20]. All experiments were
conducted at room temperature. In this work, since the oscil-
lation period of BZ depends on temperature [65], we created a
clamp that controlled sample temperatures to within 0.1 ◦C of
22.0 ◦C to maximize reproducibility. The clamp’s temperature
is controlled through a thermistor that measures the temper-
ature of the clamp near the sample and two Peltier (TEC)
devices that are managed through a Proportional-Integral-
Derivative (PID) feedback loop run on an Arduino (see Fig. S2
of the Supplemental Material [33]). The sample is robustly
driven to the clamp’s temperature because the clamp possesses
a large thermal mass relative to the sample and large thermal
contact area with the sample (see Fig. S2 of the Supplemental
Material [33]).

Samples are loaded in a manner identical to the previous
study [20]. Further details are presented in Appendix A 5
(Protocol).

3. BZ chemical preparation

The BZ loaded into the microfluidic network is first
mixed outside the microfluidic device. A 0.36-mL volume
of photosensitive BZ is prepared by sequentially adding
equal 60-μL volumes of sulfuric acid, sodium bromide,
malonic acid, sodium bromate, ferroin, then Tris(2,2’-
bipyridyl)dichlororuthenium(II) hexahydrate to an Eppendorf
tube, then mixing it with a Vortex mixer. Note that during the
sequential pipetting of the chemicals, upon adding the sodium
bromate, the solution converts from colorless to a vivid, trans-
parent yellow for 15 s before returning to a colorless state. The
output volumes of the pipette used had a measured percent
coefficient of variance of 1.2%. The concentrations of the
reagents in the final 0.36-mL mixture, and ultimately in the
individual BZ microreactors, are in Table IV.

4. Optics

We measured the chemical state of the reactors by mea-
suring their absorbance of green light. Ferroin’s absorbance
changes drastically between its oxidized and reduced state.
The green light is filtered to 515 ± 10 nm, to avoid exciting
the photocatalyst, Ru(bipy)3 (see Figs. S3(a) and S3(c) of the
Supplemental Material [33]).

Patterns of blue light perturbations were used to set bound-
ary conditions and initial conditions by selectively exciting the
photocatalyst (see Figs. S3(a) and S3(b) of the Supplemental
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TABLE IV. Final experimental chemical conditions in reactors.

Chemical Molecular formula Concentration (mM)

Sulfuric acid H2SO4 80
Sodium bromide NaBr 25
Malonic acid C3H4O4 400
Sodium bromate NaBrO3 288
Ferroin C36H24FeN6O4S 3
Tris(2,2′-bipyridyl) dichlororuthenium(II) hexahydrate C30H24Cl2N6Ru.6H2O 1.2

Material [33]). Boundary conditions were applied by shining
light on the rectangle surrounding each network at an intensity
that completely inhibited oscillations (see Fig. S3(b) of the
Supplemental Material [33]). Initial conditions were set by
applying light to the reactors by inhibiting all reactors with
light for 300–600 s. Then, the light was turned off at different
times from each of the reactors, thus causing them to resume
oscillating at different times. The success rate of hitting target
initial conditions far from Trot or Pronk was low.

As in previous works [20,27,28], the patterned blue light
was periodically turned off and on (period 2 s, 50% duty
cycle) to allow image acquisition without the interference of
the applied illumination. During some of the experiments, the
blue light was homogenized by measuring the heterogeneity
with a CCD and iteratively adjusting the applied illumination
through a feedback scheme [21].

The light intensity of sample illumination was measured
by placing a power meter in the sample plane. The results
are similar to previous work [27]: intensity of blue light
applied to boundaries, 0.3 ± 0.04 mW cm−2; intensity of
blue light applied to reactors during initial condition setting,
1 ± 0.2 mW cm−2; intensity of blue applied light when pro-
jector blank or black, 0.09 ± 0.009 mW cm−2 ; and intensity
of 515-nm green sample illumination, ∼0.1 mW cm−2 . Er-
rors, in standard deviations, express variance in average
illumination across the whole sample field of view across
all experiments, not the variance across the field of view in
individual experiments.

5. Protocol

The protocol for an experiment is as follows:
(1) PDMS chip, reentrant window, and O-ring (see

Fig. S2(a) of the Supplemental Material [33]) are cleaned with
isopropyl alcohol, deionized water, and dried with compressed
air. They are left under petri dishes to prevent dust accumula-
tion.

(2) A small batch of BZ solution is prepared as detailed
earlier in Appendix A. Solution is left in a dark chamber.

(3) The PDMS chip is plasma (Harrick Plasma - PDC32G)
for 3 min at 400 mbars in ambient atmosphere.

(4) The BZ solution is then pipetted into the networks of
interest in the PDMS chip as shown in depth in Supplementary
Movie S7 of Ref. [20].

(5) Now, with the reentrant window placed approximately
above a feature of networks covered by BZ, the reentrant
window must be secured firmly and precisely. While view-
ing the sample using a stereomicroscope with green filtered
transmission illumination, the thumbscrews (see Fig. S2 of the

Supplemental Material [33]) are slowly turned, clamping the
device. We alternated tightening them in a zigzag pattern, with
each tightening of a screw being roughly a 1/8 or less rotation.
During this process any bubbles which are present in the reac-
tors should decrease in size until they are invisible. Once all
reactors are surrounded by dark outlines (see Fig. S1(a) of the
Supplemental Material [33]), there are no shearing distortions
to the network, and there are no bubbles, this process is halted.

(6) The clamp and the network with BZ sealed into it are
then left in a dark, room temperature chamber until it has been
40 min since the BZ was initially mixed in step 2, typically
20 min.

(7) The clamp is then loaded into the projection illumina-
tion microscope (see Fig. S3(c) of the Supplemental Material
[33]). Then, a MATLAB code with GUI is used to align a
projected pattern onto the sample (see Fig. S3(b) of the Sup-
plemental Material [33]) and initiate temperature control.

(8) Light is projected onto boundaries and sets initial con-
ditions of networks as described earlier in Appendix A. Data
are gathered for between 3000 and 24 000 s, ∼10 and 81 pe-
riods of oscillation of each reactor.

(9) In a few experiments a second attempt at setting initial
conditions was made.

APPENDIX B: EXPERIMENTAL
PHASE-LOCKED CRITERIA

To identify phase-locked states in experiments we require
that d

dt (φi − φ j ) is almost zero and that d2

dt2 (φi − φ j ) is also
small. We use the following algorithm to identify phase-
locked experiments:

(1) Identify the time evolution of the three phase differ-
ences (θ21, θ32, θ43).

(2) Low-pass them to form (θ21, θ32, θ43).
(3) Find the longest region in the time series where the

absolute values of each velocity and the average acceleration
for the system are below thresholds εa,v such that∣∣∣∣ d

dt
θ21

∣∣∣∣,
∣∣∣∣ d

dt
θ32

∣∣∣∣,
∣∣∣∣ d

dt
θ43

∣∣∣∣ < εv

and

d

dt

1

3

(∣∣∣∣ d

dt
θ21

∣∣∣∣ +
∣∣∣∣ d

dt
θ32

∣∣∣∣ +
∣∣∣∣ d

dt
θ43

∣∣∣∣
)

< εa.

We use εv = 2.5×104 rad s−1 and εa = 9×10−8 rad s−2.
(4) If the longest region is five or more periods (1500 s),

we consider the experiment to be phase locked.
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TABLE V. Simulation parameters known.

Description Value Unit

Reagent concentrations
a Bromate 288 mM
m Malonic acid 400 mM
co Total metal ion catalyst 4.2 mM
h Protons 160 mM
b Bromomalonic acid 0.12m mM

Reaction rates and relevant constants
k1 2×106h M−1 s−1

k2 2h2a s−1

k3 3×103 M−1 s−1

k4 42ha s−1

k5 5×109h M−1 s−1

k6 10 s−1

k7 29m s−1

k8 9.3m s−1

k9 b s−1

k10 0.05m s−1

kr 2×108 M−1 s−1

kred 5×106 M−1 s−1

kI 0 s−1

bC 0.05 M
cmin

√
2kr (k9 + k10)co/k2

red M

APPENDIX C: BEST FIT MODEL

1. Fitting to experiments

We fit the model in Eqs. (4) to each experimental time
series of phase differences [Fig. 7(b)] by varying the coupling
strength k, excitatory coupling ratio ke, and the set of three
intrinsic frequency differences �ω = (	ω21,	ω32,	ω43) to
minimize the squared error between theory and experiment.
The first experimental data point was used as the initial
condition.

Only a selection of the experimental data was used in the
fit. First, we excluded early time points for which oscillators
had not achieved a similar frequency. This threshold is defined
in Appendix A. The final point in an experimental trajectory
used in a fitting was halfway between when the phase-locked
condition was met and when it was lost or the end of the
experiment if it did not unlock. Further details on the transient
dynamics are shown in Fig. S4 of the Supplemental Material
[33].

The identified best-fit parameters were 	ωi j �= 0, k =
2×10−2 s−1, and ke = 0.05. The intrinsic frequency differ-
ences divided by coupling rate 	ωi j/k obeyed a Laplacian

distribution 1
2b exp(−|	ωi j/k−μ|

b ) with mean μ = 0 and rate pa-
rameter b = 2π×4×10−3 rad s−1 [Fig. 7(b)]. Dividing these
by the maximum of the H function used in the fitting deter-
mines a distribution of dimensionless heterogeneity. Further,
the fitting required some excitatory coupling ke = 0.05. Ta-
ble VI summarizes the best-fit values used in subsequent
simulations. We also explored the possibility of diagonal cou-
pling when fitting, but found its contribution to the quality of
fit to be two orders of magnitude less sensitive compared to
nearest-neighbor coupling and frequency heterogeneity.

TABLE VI. Simulation parameters fitted: In “Fit values” and a
single number represents the number fit and then used in simulations
and theory. If in a fit or simulation values were randomly distributed,
the form of the distribution is described by “L(μ, b)” and represents
a Laplacian probability density function with mean μ and rate pa-
rameter b.

Parameter Fit values Unit

Coupling
k 2×10−2 s−1

ke 0.05 1
Chemical heterogeneity

	ωi j L(0, 2π×8×10−5) rad s−1

	ωi j/k L(0, 2π×4×10−3) rad
	ωi j/kHmax L(0, 0.2) 1

The observed distribution in angular frequency differences
is commensurate with previous observations in Ref. [21]
where we noted a 2% variation in the periods of individual
(uncoupled) wells of the same BZ-in-PDMS system. We can
compare the present measurements with the previous through
the relation τ + 	τ = 2π/(ω + 	ω). Solving for 	τ , letting
	ω = √

2b (where b = 2π×8×10−5 from Table VI), and
τ = 300 s gives 	τ ∼ 10 s, or approximately 3% of the total
period. Thus, the present variation we infer from fitting the
phase model to observed dynamics agrees with the spread in
oscillation periods previously measured.

In Sec. SIII of the Supplemental Material [33]we estimate
the coupling strength from first principles kideal and find that
the best-fit value is two orders of magnitude less than this
calculation [33]. In past works with emulsion droplets the
best-fit value of k has been closer to one order of magnitude
lower than expected [24,25,28]. Compared to these past ex-
periments on emulsion droplets, the experiments performed
here had a much larger amount of oil phase in the form of
PDMS surrounding each four-ring network (see Fig. S1 of the
Supplemental Material [33]). As Br2 is known to partition into
and react with oil and PDMS [32], more PDMS would cause
a reduction in inter-reactor coupling. We hypothesize that this
is the cause of the discrepancy.

2. Simulations

Simulations without heterogeneity. The dynamics,
Eqs. (4), were implemented using the CHEBFUN Toolbox [66]
and integrated using MATLAB’s ODE45 with relative and
absolute tolerances of 1×10−10.

A dense, uniform sampling of half of the state space,
62 251 simulations in total, was used to determine the size of
each attractor’s basin of attraction [Fig. 5(b)]. An additional
set of 5399 simulations was run that densely sampled initial
conditions in the θ21 and θ43, but coarsely in θ32, to generate
the slices shown in Fig. 5(a).

Simulations with heterogeneity. In running simulations
from a dense set of initial conditions, each initial condition
had seven simulations initialized from it with independent
resamplings of frequency heterogeneity. We thus could ob-
serve the impact of heterogeneity throughout state space by
sampling the distribution of heterogeneity in all regions of
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state space. The results of 34 713 such simulations are shown
in Fig. 8(b).

To determine the impact of experimentally realistic het-
erogeneity on the model, we ran simulations of Eq. (3)
with the experimental best-fit parameters in Table VI. Specifi-
cally, we included heterogeneity in intrinsic frequencies in our
simulations, with 	ωi j drawn from the measured Laplacian
distribution defined in Table VI, with mean zero and rate
parameter 2π×8×10−5 rad s−1, while all other parameters are
the constant value enumerated in the third row.

3. Phase model reduction

In the limit of weak coupling, the dynamics of each oscil-
lator in a network can be reduced through the introduction of
a coupling function H . This nonlinear function quantifies how
mass transport dynamically alters the phases of connected
oscillators. To determine this function for our system, we first
identify the phase response curves (PRCs) Q of the Vanag-
Epstein model using Malkin’s adjoint method [40–42,44].
Q quantifies the phase-dependent response of an oscillator’s
phase due to infinitesimal chemical perturbations δc such that
δφ = Q(φ) · δc. In our case there are four curves, one for each
chemical species in the VE model.

The instantaneous rate of change of an oscillator i’s phase
due to interactions with the jth oscillator is denoted Fi j and
is proportional to the dot product of Q and the mass flux g
(M s−1), Fi j (φi, φ j ) = Q(φi ) · g(φi, φ j ). Since the mass flux
is driven by concentration differences between oscillators,
we set g(φi, φ j ) = μ[cLC(φ j ) − cLC(φi)], where the dynamic
concentrations are that of an isolated oscillator and the ma-
trix μ is identical to the one in Eq. (1). The ability to use
the pretabulated concentration dynamics in generating the
interaction function is key to the model reduction process.
Importantly, it is an approximation valid in the weak coupling
limit; in general, oscillator interactions will perturb the oscil-
lators off of their uncoupled limit cycles.

The complete phase dynamics of each oscillator are then
given by the sum of all internode interactions and the intrinsic
frequency ωi such that d

dt φi = ωi + ∑
j Ai jF (φi, φ j ). For our

system, multiple species diffuse across the PDMS barrier. F
is therefore the linear combination of the flux due to Br2, u,
and HBrO2, x, such that

F (φi, φ j ) = k[Qu(φi )(uLC(φ j ) − uLC(φi ))

+ keQx(φi )(xLC(φ j ) − xLC(φi ))]. (C1)

We can further simplify the dynamics by assuming that the
phase difference φ j − φi evolves slowly compared to the
intrinsic frequency, and period-average the interaction. We
introduce the interaction function H such that

Hi j (φ j − φi ) ≡ k−1(2π )−1
∫ 2π

0
F (α, α + φ j − φi )dα. (C2)

Typically, the coupling rate k (s−1) is incorporated into H .
Here, we have divided by the coupling strength to make the
coupling strength dependence in Eqs. (4) explicit. We express
the interaction function H as the sum of two terms arising
from the form of Eq. (C1). The final expression is then

H (φ j − φi ) = Hu(φ j − φi ) + keHx(φ j − φi ). (C3)

APPENDIX D: METRIC OF DISTANCE

To measure distances between two points in the state space
of the 3D phase difference dynamics, we found a surprising
function d (θ, θ′) was required. For a given pair of points θ

and θ′ d is calculated by the following algorithm:
(1) Consider two points in the state space: θ′ =

(θ ′
21, θ

′
32, θ

′
43) and θ = (θ21, θ32, θ43).

(2) Compute the phase difference of the fourth edge,
which is completely determined by the other three, θ′

f =
(θ ′

21, θ
′
32, θ

′
43, θ

′
21 + θ ′

32 + θ ′
43) = (θ ′

21, θ
′
32, θ

′
43, θ

′
41) and θ f =

(θ21, θ32, θ43, θ41).
(3) Define a vector of phase difference between states with

∠ being complex, or phasor, angle, θdiff j = ∠ exp(i ∗ (θ ′
f j

−
θ f j )).

(4) Let the distance between θ′ and θ be the Euclidean
norm of the 4D phase difference vector, d (θ, θ′) = |θdiff|2.

APPENDIX E: COMPUTING TRANSVERSE STABILITY
OF INVARIANT MANIFOLDS

1. Point invariant manifolds (fixed points)

Traditional linear stability analysis determines the stabil-
ity of the point invariant manifolds. A given point invariant
manifold θ†, at which by definition �(θ†) = 0, is stable when
the Jacobian J = ∇θ�|θ† has eigenvalues with real part which
are all strictly negative. This 3×3 matrix is written explicitly
in Sec. SIV, Eq. (S2), of the Supplemental Material [33]. The
maximum real eigenvalue λ∗ of all steady states of the model,
including the attractors discussed in the paper, are listed in
Figs. S6 and S7 of the Supplemental Material [33].

2. Higher-order invariant manifolds

The maximum transverse eigenvalue λ∗ of higher-order in-
variant manifolds determines whether trajectories will locally
collapse to or diverge from them [67]. λ∗ can be computed at
the phase model level by linearizing the dynamics in Eqs. (4)
about the invariant manifolds [8,16,61,67,68]. The analysis is
simplified by the fact that all the IMs enumerated by the H/K
theorem are linear geometric objects with explicit represen-
tations. This simplification is a consequence of choosing to
represent the network’s dynamics in phase difference space.

We begin by considering whether a trajectory θ′(t ) per-
turbed off an invariant manifold with displacement δθ will
converge back to or diverge from the manifold. For small
displacements, the dynamics can be linearized around the
trajectory that lies on the manifold by letting θ = θ′ + δθ and
expanding the dynamics � [Eqs. (4)] for small δθ:

d

dt
(θ′ + δθ) = �(θ′ + δθ)

≈ �(θ′) + Jδθ + O (δθ2), (E1)

where J = ∇θ�|θ′ is the Jacobian evaluated along a trajectory
on an IM. Since we are only interested in whether or not per-
turbations decay or grow, we consider the leading-order dy-
namics of the perturbation relative the manifold trajectory θ′:

d

dt
δθ = Jδθ. (E2)
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We now project the perturbation and its dynamics onto a
basis aligned with an invariant manifold using the unitary
transformation matrix P = [t1, . . . , n1, . . .]T , where ti and ni

are, respectively, the set of unit vectors tangent to and normal
to the manifold that form an orthonormal basis. The unit
vectors in P are defined in terms of the original basis, e.g.,
ti = (ti · eθ21 , ti · eθ32 , ti · eθ43 ). By defining a new perturbation
ξ = P · δθ and multiplying both sides of Eq. (E2) by P, we
can transform the dynamics of perturbations to the following:

d

dt
(P · δθ) = PJδθ ⇒ d

dt
ξ = PJP−1ξ. (E3)

The properties of the resulting matrix J ′ = PJP−1

determine manifold stability. First, we are only interested in
perturbations off of the manifold, δθ ∈ [n1, n2, . . .]. Perturba-
tions along the manifold cannot produce dynamics that carry
trajectories off it because normal dynamics are always zero
by definition everywhere along IMs such that � · ni|θ′ = 0.
Second, tangent dynamics of ξ that might result from normal
perturbations also do not contribute to the perturbed trajec-
tories convergence or divergence from the manifold [67]. We
can therefore focus on the block of J ′ that corresponds to
normal dynamics in response to normal perturbations. This
block will be a C×C matrix where C is the system dimension
minus the dimension of the manifold. In our case, C = 1
or 2 for, respectively, planar and linear IMs; examples are
shown in the Supplemental Material [33]. The maximum real
eigenvalue of this block λ∗ then determines the linear stability
of the manifold.

3. Algorithm

We summarize the process described above as follows:
(1) Choose an invariant manifold M, of dimension k, in an

n-node network.
(2) Determine k orthonormal vectors which span M and

label them the tangent vectors T . Determine a set N of C =
n − 1 − k vectors orthonormal to one another and T . We use
the Gram-Schmidt procedure.

(3) Compute a unitary transformation matrix P, with the
first columns composed of invariant manifold tangents, then
followed by normals.

(4) Compute the Jacobian J (θ′) of the system dynamics at
points on the invariant manifold θ′.

(5) Transform the Jacobian into its tangent and normal
components using P, J ′(θ′) = P · J (θ′) · P−1.

(6) Extract the block of J ′ that contains the decoupled
transverse dynamics—the columns and rows corresponding to
normal components.

(7) Compute the maximum real eigenvalue of the normal
block λ∗(θ′).

An example outcome of this procedure for the (Dp
1, Dp

1 )
invariant manifold is shown in Sec. SIVA of the Supplemental
Material [33]. Generic expressions of the block of J ′ for all
invariant manifolds of a broad class of four-ring networks are
computed in terms of first derivatives of H in Table SII of
the Supplemental Material [33]. A comparison between the
stability of manifolds of a four-ring network of Kuramoto
oscillators to our system is presented in Fig. S9 of the Sup-
plemental Material [33].
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FIG. 10. Histograms of the distances of phase-locked steady
states generated by heterogeneous simulations to each H/K attractor.
The cutoffs (gray bars) denote the end of the distribution, which are
either local minima or the points at which the count drops to zero.
These distances are, respectively, 0.825, 0.5, 1.4, and 3.0 rad for
Gallop, Pronk, Pace, and Trot.

APPENDIX F: NUMERICAL CONTINUATION
TO COMPUTE BIFURCATION DIAGRAMS

(1) MATCONT was used to compute the loss of stability
of attractors to heterogeneity [69]. To this end we set up
MATCONT to continue the attractors in the 	ω = 0 case in
different directions �ω = αW, each parametrized by a sin-
gle parameter α. MATCONT was set to run until discovering
loss of stability and not further. During this limited analysis
we observed Limit (Saddle-Node) and Branch (Transcritical)
points as well as Hopf bifurcations.

(2) We found it was essential to pose the problem carefully
otherwise the MATCONT solver was unable to continue the
problem. First, it was essential we represent the interaction
function H as a Chebyshev function [66]. This alone required
us to use the script based CL_MATCONT (version 6.11) in-
stead of the GUI based version. We also needed to provide
a symbolic Jacobian of the system, with d

dχ
H (χ ) approx-

imated using derivatives of the Chebyshev represented H .
Third, we needed to provide the Jacobian of the dynamics
� with respect to the parameters W. We use the options
MaxStepSize, 1×10−3; MinStepSize, 1×10−8; FunTolerance,
1×10−9; VarTolerance, 1×10−11; TestTolerance, 1×10−11;
Singularities, 1; Eigenvalues, 1; InitStepSize, 1×10−11; Max-
CorrIters, 20; MaxNewtonIters, 3; SymDerivative, 2; and
SymDerivativeP, 1.

APPENDIX G: STATE CLASSIFICATION METHOD

Experimentally observed steady states are associated with
an H/K attractor using heterogeneous phase model simula-
tions as a guide using the following protocol:

(1) Compute the distances between steady states from
simulation and all H/K attractors.

(2) Assemble histograms of the distances. Figure 10
shows the histograms for each H/K attractor.

(3) For each histogram, determine a threshold distance dA

at which the first peak decays to zero or is a local minimum.
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(4) For an experimentally observed steady state, if it falls
within the distance dA of an attractor, assign it to that attractor.

Otherwise, if the steady state’s location is further than the
threshold for all attractors, assign it to the Other category.
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