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SI. MOVIES

• Movie S1: Video of an experimental network converging to the Trot attractor: Initially three reactors flash at a
similar times, with the fourth flashing out of phase relative to them. As time goes on the system converges to a
nearly ideal realization of the Trot state. The raw video of the experiment is shown alongside a space-time plot
of the video and the calculated phase differences between reactors 1 and 2, 2 and 3, and 3 and 4. The phase
differences are denoted θij ≡ φi − φj .

• Movie S2: Video of an experimental network in the Pace attractor: The experiment starts in a Pace pattern and
proceeds to stay in it during the rest of the experiment. The raw video of the experiment is shown alongside a
space-time plot of the video and the calculated phase differences between reactors 1 and 2, 2 and 3, and 3 and
4.

• Movie S3: Video of an experimental network in the Pronk attractor: The experiment starts in a Pronk state
and proceeds to stay in it the during rest of the experiment. The raw video of the experiment is shown alongside
a space-time plot of the video and the calculated phase differences between reactors 1 and 2, 2 and 3, and 3 and
4.

• Movie S4: Video of an experimental network in an unideal Trot steady-state: The experiment starts and stays
in a state in which flashing is initiated at the top left, and proceeds to the bottom right reactor in a Z-pattern.
Although it is visually unlike the idealized Trot state, it is at the tail of an distribution of steady-states centered
about Trot. The raw video of the experiment is shown alongside a space-time plot of the video and the calculated
phase differences between reactors 1 and 2, 2 and 3, and 3 and 4.

• Movie S5: Video of rotation about 3D plot in manuscript Fig. 5(a) which shows the state-space of the theoretical
model.

• Movie S6: Video of rotation about a 3D plot of the same state-space as Fig. 5(a) except with experimental
data. Since many experiments start near steady-state, some trajectories are short.

• Movie S7: Video of rotation about 3D plot in manuscript Fig. 5(b) which shows basins of attraction of the
theoretical model and experiments.

• Movie S8: Annotated video of experiment converging from Pronk to Pace Fig. 6(a). The raw video of the
experiment is shown alongside a space-time plot of the video and evolution of the phase differences between
reactors moving through the state-space of the network. As during this experiment the 2nd and 3rd reactor
oscillate in-phase, only the 2D slice of the state-space in which the trajectory is confined to, θ32 = 0, is shown.
Within this view of state-space the 1D H/K predicted invariant manifold (Ds

1, D
s
1) is shown and is colored by its

maximum transverse eigenvalue, as in the manuscript Fig. 6a)(c). The experimental trajectory noisily moves
about Pronk before transitioning to Pace directly along the invariant manifold.

• Movie S9: Annotated video of experiment converging from Pronk to Trot Fig. 6(b). The raw video of the
experiment is shown alongside a space-time plot of the video and evolution of the phase differences between
reactors moving through the state-space of the network. As during this experiment the 1st and 3rd reactor
oscillate in-phase, only the 2D slice of the state-space in which the trajectory is confined to, θ32 = −θ21 where
φ1 = φ3, is shown. Within this view of state-space the 2D H/K predicted invariant manifold (Dp

1 , D
p
1) is shown

and is colored by its maximum transverse eigenvalue, as in the manuscript Fig. 6(b)(c). The experimental
trajectory starts near Pronk before transitioning to Trot, following the in-plane velocity field of the 2D the
invariant manifold.

• Movie S10: Video of rotation about 3D plot in manuscript Fig. 6(c) which shows theoretical stability of in-
variant manifolds. The video starts from the perspective of the Fig. 6(c), then rotates about it to help readers
understand the structure of the invariant manifold stability.

• Movie S11: Video of rotation about 3D plot in manuscript Fig. 4(a) which shows the steady-states of experi-
ments. The video starts from the perspective of the Fig. 4(a), then rotates about it to help readers understand
the 3D structure of the steady-states in the state-space of the experiments. It can be seen clearly that the Other
states are distributed anisotropically about Trot, such that they are more widely spread across a plane spanned
by the two linear, orange invariant manifolds, (Ds

1, 1).

• Movie S12: Video of rotation about 3D plot in manuscript Fig. 8(a) which shows the steady-states of heteroge-
neous simulations. The video starts from the perspective of the Fig. 5(b), then rotates about it to help readers
understand the 3D structure of the steady-states in the state-space of the heterogeneous model.
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SII. ADDITIONAL EXPERIMENTAL DETAILS
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FIG. S1. (a) i) A single network of four coupled BZ reactors. The side lengths, L, of the reactors are 62 µm, side-to-side
distances, d, between reactors are 26 µm. ii) The distance between a reactor and the inner surface of the inhibited boundary,
dm, was 130 or 190 µm. The thickness of the inhibited boundary, Lm, was 100 µm. iii) 50X magnification profilometer image
of cut microfluidic reactor network showing the out of plane height H of the reactors is 30 µm and iv) 100X magnification
profilometer image of cut microfluidic reactor network showing there is below 2 µm of PDMS between the bottom of the reactors
and the glass below it. (b) View of running experiment with nine parallelized 4-node ring networks running simultaneously.
The reentrant window is a piece of glass used to seal the BZ into the lattice. The black region along the borders, outside
the reentrant window, is filled with oscillatory BZ reaction. (c) View of same experiment except with actinic, inhibiting light
selectively patterned onto the orders.

.

SIII. EXPLANATION OF BEST FIT MODEL

A. Fitting to experiments/choice of free parameters

The best fit model corresponds to substantially weaker than expected diffusive coupling. The diffusive coupling
rate predicted by quasi-static diffusion between rectangular reactors is given by

kideal =
PD

Ld
(S1)

where P is the partition coefficient, D the diffusion coefficient, L the side length of the reactors, and d is the distance
between reactors. In our case D = 10−9[m2 s−1], P = 2.5[1], L = 62[µm], and d = 26[µm]. Thus, the idealized
coupling rate is kideal = 2.[s−1].

The best fit value of k (manuscript Table VI) is two orders of magnitude below kideal. As Br2 is known to partition
into and react with oil and PDMS, more PDMS would cause a reduction in inter-reactor coupling. We hypothesize
that this is the cause of the discrepancy.

Since the coupling rate equation Eqn.S1 is composed of geometric parameters L and d that are precisely prescribed
by the photolithographic process, the discrepancy is isolated to the product of the two less certainly known material
properties P and D. We can therefore consider our fits as a measurement of the product PD. Given the best fit
k = 2.× 10−2[s−1], PD = 3.× 101[µm2 s−1].

The necessity of excitatory coupling is due to observation of robust in-phase synchronization during experiments.
Without excitatory coupling (ke = 0), the best fits to experiments with initial conditions that converged to Pronk
and Bound were inaccurate as they would always converge to Trot. Although with no excitatory coupling, ke = 0, the
phase model has Pronk and Bound as attractors, the basins of attraction of Pronk and Bound are much smaller than
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FIG. S2. Temperature controlled BZ clamp. (a) CAD diagram of sealing of a set, or feature, of BZ networks. The networks
are sealed above and below by glass. A volume of extraneous BZ is also sealed, however is irrelevant to the dynamics of the
network. Sealing is achieved by gradual adjustment of fine-threaded (6-80) thumbscrews. These apply force via a metal clamp
frame, and softened by an 2.5mm thick layer of PDMS. (b) CAD diagram rendering of sealing components of the clamp. (c)
CAD diagram of the temperature controlling elements of the clamp. Temperature measurement occurs through a thermistor.
The clamp is heated and cooled using 2 thermoelectric cooler (TEC) peltier elements placed symmetrically about the sample.
Feedback between them is performed using an Arduino’s standard PID libraries. (d) Photograph of temperature-controlled
clamp containing a sealed network. All components of the clamp are clearly visible except the TECs, elastic layer, reentrant
window, and o-ring. Unlike in simplified diagrams (a),(b), and (c), three other necessary components of the clamp are pictured:
wiring, water circulating tubes connected to the heat sinks, and thermal cutoffs. The wiring connects the peltier TECs and
thermistor to the controlling Arduino. The tubes circulate water through the heat sinks and cools the water down using fan
radiators. The thermal cutoffs in series with the TECs short-circuit reversibly if the clamp become hot, above 50 °C, by some
error. A meter stick is shown for reference (units of cm).

experimentally observed. Allowing finite excitatory coupling, specifically ke = 0.05, achieved good fits to experimental
data.

B. Best fit model: All steady-states

In the main manuscript, we focus on the H/K predicted attractors. Additionally, we attempted to find all remaining
steady-states θ†, such that Ψ(θ†) = 0, of the homogeneous model ∆ω = 0. This was achieved by dividing state-space
into a 100x50x50 grid and initializing a Newton-Raphson search at each grid point. The result of the search θ†n was
considered a valid steady-state if |Ψ(θ†n)|2 < 1× 10−16. The identified steady-states are shown as space-time plots
with their maximum eigenvalue and topological index in Fig. SI and as colored points in the state-space in Fig. S6.
The state-space contains 168 steady-states Fig. SI; 10 of which are attractors or repellers while the remaining 158
are all saddle steady-states. We believe this method may have discovered all steady-states since all their topological
indices sum to 0, the Euler characteristic of the state-space [Sec. SV]. Regardless of whether we found all steady-
states, it does show: (1) The unique stable steady-states are the H/K point invariant manifolds and (2) the state-space
possess a wealth of unstable, saddle steady-states. This method was too slow to be used to efficiently calculate the
steady-states of the model with heterogeneity.



5

LCD array

Sample
Green Kohler illumination

Image of LCD array

2x objective
infinity-corrected 

50-50 Beam
splitter

Tube lens

C
C

D
 

i) Kohler illumination arm :

G
reen LED

Lens

Aperture
515nm

 filter

Aperture

Lens

Inverted stock projector lens

DSLR infinity focused lens

Reduced image of LCD array

(a) Ray diagram of programmable 
illumination microscope

(b) Programmable illumation 
example

Projected image

(c) Picture of programmable 
illumination microscope

CCD view

LCD projector

DSLR infinity focused lens

Kohler illumination

Tube lens

CCD

Sample

ii) Light perturbation arm:

Inverted stock projector lens

FIG. S3. (a) Ray diagram of a both i) microscopy imaging of BZ networks and ii) their spatiotemporal perturbation with
light. i) Imaging of the networks functions through 515nm green transmission illumination, ii) Spatiotemporal perturbation is
achieved by imaging a commercial liquid-crystal display (LCD) projector’s LCD array set to project pure blue light onto the
sample. The blue light efficiently excites the photo-sensitive, oscillation-inhibiting catalyst. (b) Example of how spatiotemporal
light patterning is achieved and its quality. Images are projected onto the sample by sending images to a VGA/HDMI port
connected to the projector, an example is labeled ’Projected image’. This can be done through powerpoint, however we
use MATLAB. This image then hits the sample, homogeneous and in crisp focus, shown in ’CCD view’. (c) Picture of full
experimental apparatus, including a clamped, temperature-controlled sample. Overhead light shown in picture not on during
experiments.

SIV. LINEAR STABILITY ANALYSIS OF 2D AND 1D INVARIANT MANIFOLDS

A. Example: computing the maximum transverse eigenvalue of an invariant manifold

Following the algorithm present in Appendix E for the invariant manifold (Dp
1 , D

p
1):

1. We choose the invariant manifold (Dp
1 , D

p
1). It is a 2D manifold in the 3D state-space of the 4 ring network.

2. The invariant manifold (Dp
1 , D

p
1) is parameterized by θ = (η1,−η1, η2), manuscript Table II. The set of tangent

vectors which span it are T = {
√

2
−1

(1,−1, 0), (0, 0, 1)}. The one vector normal, which we put in our set of

possible normal vectors N = {2− 1
2 (1, 1, 0)}.

3. We now compute the unitary transformation matrix P . In the case of the 4 ring’s invariant manifold this is
very simple:

P = [t1t2n1]
T

=
1√
2

1 −1 0

0 0
√

2
1 1 0


4. For our particular 4 ring network the Jacobian J is given by:

J(θ) = −k

[
[H′(θ21)+H

′(−θ21)+H′(θ43+θ32+θ21)] [−H′(θ32)+H
′(θ43+θ32+θ21)] H′(θ43+θ32+θ21)

−H′(−θ21) [H′(θ32)+H
′(−θ32)] −H′(θ43)

H′(−(θ43+θ32+θ21)) [H′(−(θ43+θ32+θ21))−H′(−θ32)] [H′(θ43)+H
′(−θ43)+H′(−(θ43+θ32+θ21))]

]
,

(S2)

where H ′(x) = dH(χ)
dχ |χ=x. Note that since we numerically computed H, H ′ is computed numerically as well.

5. We compute J ′ = PJP−1.

J ′ =

−2H ′(−θ21)−H ′(θ21) −2H ′(θ43) −H ′(θ43)
− 1

2H
′(θ21) −2H ′(−θ43)−H ′(θ43) 1

2 (H ′(θ21)− 2H ′(−θ43))
0 0 −H ′(θ21)−H ′(θ43)
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FIG. S4. (a) View of a single 4 reactor network over time during an entire experiment. The top plot is of light transmitted
through the reactors. It is normalized from the raw intensity measured as an average of a square of pixels inside a reactor
[Fig. S1(b)]. Specifically if the raw signal was I(t), with a maximum value during the experiment was Imax and a minimum
at Imin, the normalized intensity was (I(t) − Imin)/(Imax − Imin). As time goes on, the amplitude of the light peaks goes
downwards, while the baseline increases. The lower panel tracks the phase differences between the reactors versus time.
Eventually the reactors reach a phase-locked steady-state in which all reactors are firing antiphase their two neighbors. Since
the phase differences between the reactors are never perfectly stationary, we use a specific threshold for when phase differences
evolve slowly enough to be considered phase-locked in Appendix B. At about 20,000s the experiment ceases to be considered
phase-locked as its phase differences become noisy. (b) An inset of early times in the experiment. Note that the frequencies
and amplitudes of oscillation of the reactors are initially not the same. For example, the interval between the first two spikes of
reactors 2(red) and 4(green) are different, and the amplitudes of 3(blue) and 4(green) are different. However, at about 4,400s
the reactors possess similar frequencies by the threshold in Appendix A Protocol. (c) An inset of later times in the experiment.
Note that the frequencies and amplitudes of oscillation of the reactors are very similar. At the green line marking 12,050s, the
threshold for phase-locking is met.

6. We extract the ’block’ of dynamics corresponding to perturbations in the only normal direction

[−H ′(θ21)−H ′(θ43)]

7. In general, this extracted block will not be 1×1 and the max transverse eigenvalue will be its max real eigenvalue.
Since the matrix is 1 × 1, the value itself is the MTE. We conclude that a infinitesimally small perturbation
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FIG. S5. Histogram of all phase differences observed during experiments categorized as phase-slipping and not discussed in
main paper. Each dot’s opacity is proportional to the number of states observed within a cube centered about the point. The
data fills much of the cube, although more states are about Trot and Bound. The fact the distribution does not also include a
thick band connecting Trot and Pace, as it does Trot and Bound is surprising. This does open the possibility of a bias in the
up-down versus left-right setup of our experiment Fig. S3. We hypothesize this is due to a systematic asymmetry in applied
light, temperature, or sealing.

normal the (Dp
1 , D

p
1) invariant manifold δn will evolve according to the equation

d

dt
δn = [−H ′(θ21(t))−H ′(θ43(t))] δn

.

B. Transverse eigenvalues for weakly coupled 4-ring networks

We now present the transverse eigen values for a 4 ring network of phase oscillators for a generic phase model
with interaction function H. With the exception of the linear invariant H/K manifold (Z2, 1), all of them are simple.
We used the algorithm proposed in the previous section on each invariant manifold to transform this Jacobian J to
identify the dynamics transverse to the manifold in J ′. The result of these calculations are shown in Table SII is the
block of J ′ corresponding to components normal or transverse the each invariant manifold.
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�����-���� ���� ��[�/�] ���� {θ���θ���θ���θ��} ����� �������

-0.0012 Attractor {0.5, 0.5, 0.5, 0.5} -1 1

-0.00056 Attractor {0.25, 0.25, 0.25, 0.25} -1 2

-0.00018 Attractor {0.5, 0., 0.5, 0.} -1 2

-0.00018 Attractor {0., 0., 0., 0.} -1 1

0.0014 Saddle {0.3, 0.26, 0.12, 0.32} 1 8

0.0014 Saddle {0.26, 0.3, 0.32, 0.12} 1 8

0.0059 Saddle {0.1, 0.37, 0.44, 0.09} -1 8

0.0059 Saddle {0.37, 0.1, 0.08, 0.45} -1 8

0.0059 Saddle {0.1, 0.08, 0.44, 0.38} -1 8

0.0059 Saddle {0.08, 0.44, 0.37, 0.11} -1 8

0.0059 Saddle {0.37, 0.44, 0.08, 0.11} -1 8

0.0059 Saddle {0.44, 0.08, 0.1, 0.38} -1 8

0.0059 Saddle {0.08, 0.1, 0.37, 0.45} -1 8

0.0059 Saddle {0.44, 0.37, 0.1, 0.09} -1 8

0.0075 Saddle {0.42, 0.08, 0.42, 0.08} -1 4

0.008 Saddle {0.5, 0.03, 0.55, 0.92} 1 8

0.008 Saddle {0.45, 0.07, 0.5, 0.98} 1 8

0.008 Saddle {0.03, 0.55, 0.93, 0.49} 1 8

0.008 Saddle {0.07, 0.5, 0.97, 0.46} 1 8

0.008 Saddle {0.55, 0.03, 0.5, 0.92} 1 8

0.008 Saddle {0.5, 0.07, 0.45, 0.98} 1 8

0.0085 Saddle {0., 0.07, 0., 0.93} -1 4

0.0085 Saddle {0.07, 0.5, 0.93, 0.5} -1 4

0.015 Saddle {0.08, 0.43, 0.57, 0.92} 1 4

0.015 Saddle {0.43, 0.08, 0.92, 0.57} 1 4

0.017 Repellor {0.93, 0.07, 0.07, 0.93} 1 4

0.017 Saddle {0.93, 0.07, 0.01, 0.99} 1 4

0.017 Saddle {0.01, 0.07, 0.93, 0.99} 1 4

0.017 Saddle {0.07, 0.93, 0.07, 0.93} -1 2

TABLE SI. A list of numerically identified symmetrically unique steady-states of the best fit model of the homogeneous 4 ring
network. For each state we computed: (first column) An example of the space-time plot of the state, (second) The maximum
eigenvalue of the dynamics linearized about the steady-state with units [s−1], indicating the exponential rate at which nearby
trajectory collapse to, if λ < 0, or diverge from, if λ > 0 , the steady-state, (third) whether or not the state is an Attractor,
Repeller, or a Saddle, (forth) the phase differences of the steady-state divided by 2π, i.e. as fractions of a period, (fifth) the
topological index of the steady-state, and (sixth) the number of distinct states in state-space equivalent the unique state on
the left. To be precise the number of distinct states is equal to the number of 4-tuples of phase differences (θ21, θ32, θ43, θ14)
generated by operating on the state on the left by every element of the symmetry group D4 and then modulo 2π.

Terms for (Z2, 1) invariant manifold:
J ′(z2, 1)11 = 1

3 (2H ′(π + θ21) +H ′(−π + θ21)− 3H ′(θ21)− 3H ′(−θ21)−H ′(−θ21 + π))− 2H ′(−θ21 − π))
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FIG. S6. All steady-states of best fit model without heterogeneity which are in the half state-space θ32 > 2π− θ21, colored by
type: Blue are Attractors with index=-1, Orange are saddles with 2 attracting direction saddles and thus index=1, Black are
saddles with 1 attracting direction and thus with index=-1, Red Repellers with index=1. Points are faint if they are a periodic
instance of another steady-state. The unstable steady-stats which form the separatrices between Pronk and Pace, and Pace
and Trot are also marked.

TABLE SII. Decoupled transverse linear dynamics of invariant manifolds universal to four-rings. H ′(x) = dH(χ)
dχ
|χ = x. The

maximum transverse eigenvalue of a given invariant manifold is the maximum real component of the eigenvalue of the associated
matrix.

H K Transformed Jacobian J ′ normal dynamics block
Linear invariant manifolds:

Ds
1 Ds

1 −
[
2H ′(0) +H ′(−θ32) H ′(−θ32)

H ′(θ32) 2H ′(0) +H ′(θ32)

]
Ds

1 1 −
[
2H ′(π) +H ′(−θ32) H ′(−θ32)

H ′(θ32) 2H ′(π) +H ′(θ32)

]
Z2 1

[
J ′(z2, 1)11 J ′(z2, 1)12
J ′(z2, 1)21 J ′(z2, 1)22

]
Planar invariant manifolds:

Dp
1 Dp

1 −H ′(θ21)−H ′(θ43)

J ′(z2, 1)12 = − 2
3 (−2H ′(π − θ21)−H ′(−π + θ21) +H ′(π − θ21) + 2H ′(−π − θ21))

J ′(z2, 1)21 = 1
3 (−2H ′(π + θ21)−H ′(−π + θ21) + 3H ′(θ21))

J ′(z2, 1)22 = − 2
3 (2H ′(π + θ21) +H ′(−π + θ21))

C. Transverse stability of invariant manifolds: Kuramoto model compared to BZ phase model

Having both parameterized the invariant manifolds guaranteed by symmetry (manuscript Table II) and provided
expressions for the MTE of these invariant manifolds for the 4 ring network (Table SII), we now compare the stability
of the manifolds for Kuramoto and best fit BZ-in-PDMS interaction functions. Fig. S7 shows the MTE as heatmaps
along invariant manifolds for (A) the Kuramoto 4 ring (H(χ) = − sin(χ)) and (B) the BZ best fit model [manuscript
Table VI and Fig. 2].

We observe that the two 4 node networks are qualitatively different. The Kuramoto model’s invariant manifolds
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FIG. S7. (a) Maximum transverse eigenvalue of 4 ring of inhibitory Kuramoto oscillators invariant manifolds. The (Ds
1, D

s
1)

and (Z2, 1) invariant manifolds are fully repelling. The (Dp
1 , D

p
1) invariant manifolds are half repelling and half attracting.

The (Ds
1, 1) manifold is largely attracting. (b) Maximum transverse eigenvalue of best fit model of 4 ring of inhibitory BZ

oscillators. All invariant manifolds are largely attracting, except (Z2, 1)

are exclusively repelling except for (Ds
1, 1) and (Dp

1 , D
p
1) about Trot. The best fit BZ model’s invariant manifolds

are almost exclusively attracting, with the exception of (Z2, 1), which is half attracting and half repelling. These
differences lead to distinct transient dynamics. While the BZ models will often form symmetric clusters on H/K-
derived invariant manifolds before reaching steady-state, the Kuramoto model will not.

SV. EULER CHARACTERISTIC OF A 3-TORUS

The Euler characteristic of a solid Polyhedra is given by:

χ = V − E + F − C

which depends on integer number of vertices V , edges E, faces F , and number of 3D objects C. The 3-Torus is a
cartesian cube with periodic boundary conditions. Thus it is a cubic polyhedra with very few unique vertices, edges,
and faces.

Vertices: There are 8 vertices of a normal cube. If we consider any vertex at the edge of the periodic cube, we see
they are related to one another by periodic boundary conditions, V = 1.

Edges: There are 12 edges of a normal cube. Each edge of the periodic cube is repeated 3 times. For example the
edge ((0, 0, 0), (0, 0, 2π)) is equal to ((2π, 0, 0), (2π, 0, 2π)),((0, 0, 0), (0, 2π, 2π)), and ((2π, 2π, 0), (2π, 2π, 2π)). There
are thus 3 unique edges, E = 3.

Faces: There are 6 faces to a normal cube. In the periodic cube each face is repeated twice, F = 3. Thus the Euler
characteristic is 0: χ = 1− 3 + 3− 1 = 0.
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